HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]
Max Sum Plus Plus
Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge
ourselves to more difficult problems. Now you are faced with a more
difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define
a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im,
jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
2 6 -1 4 -2 3 -2 3
6
8
[题意]:输入一个m,n分别表示成m组,一共有n个数即将n个数分成m组,m组的和加起来得到最大值并输出。
[分析]:
状态dp[i][j]表示前j个数分成i组的最大值。
动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j)
dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必须放在前一组里面。
max( dp[i-1][k] ) + a[j] )表示的前(0<k<j)分成i-1组,第j个单独分成一组。
但是题目的数据量比较到,时间复杂度为n^3,n<=1000000,显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来 ,这样时间复杂度为 n^2。
[代码]:
/*
输入一个m,n分别表示成m组,一共有n个数
即将n个数分成m组,
m组的和加起来得到最大值并输出。
*/
#include <bits/stdc++.h>
using namespace std;
const int N=;
#define INF 0x7fffffff int a[N+];
int dp[N+],Max[N+]; int main()
{
int n,m,maxs;
while(~scanf("%d%d",&m,&n))
{
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,,sizeof(dp));
memset(Max,,sizeof(Max)); for(int i=;i<=m;i++)
{
maxs=-INF;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-]+a[j], Max[j-]+a[j]);
Max[j-]=maxs;
maxs=max(maxs, dp[j]);
}
}
printf("%d\n",maxs);
}
}
线性DP
HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]的更多相关文章
- hdu 1024 Max Sum Plus Plus (动态规划)
Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
- HDU 1024 Max Sum Plus Plus (动态规划)
HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...
- HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1024 max sum plus
A - Max Sum Plus Plus Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I6 ...
- HDOJ 1024 Max Sum Plus Plus -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Problem Description Now I think you have got an ...
随机推荐
- Python中__str__和__repr__的区别
Python有一个内置的函数叫repr,它能把一个对象用字符串的形式表达出来以便辨认,这就是“字符串表示形式”.repr就是通过__repr__这个特殊方法来得到一个对象的字符串表示形式.如果没有实现 ...
- loj2292 「THUSC 2016」成绩单
ref 我是傻逼,我啥也不会,这是我抄的. #include <iostream> #include <cstring> #include <cstdio> usi ...
- Java中为什么字段不能被重写
官方说法: 在一个类中,一个具有相同名称的字段隐藏了父类的父类的领域,即使他们的类型是不同的.在子类中,父类中的字段是不能用简单的名称引用.相反,该字段必须通过超级访问.一般来说,我们不建议隐藏字段, ...
- 【Minimum Path Sum】cpp
题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...
- python实现删除空文件夹 附源代码
前言:空文件夹虽然不占空间,但是有时候看着确实挺烦的(别误会,我不是强迫症!),所以写了一个用于删除当前目录下的空文件夹的小程序 环境:win7 64位:python2.7:IDE pycharm20 ...
- 【转】netstat 查看端口占用情况
netstat用来查看系统当前系统网络状态信息,包括端口,连接情况等,常用方式如下: netstat -atunlp,各参数含义如下: -t : 指明显示TCP端口 -u : 指明显示UDP端口 -l ...
- Unity3D - 设计模式 - 工厂模式
工厂模式:以食物生产为例 1. 一个生产食物的工厂(此项 需要建立两个类:食物基类<Food>,工厂类<Factory>) 2. 可以生产不同的食物(此项 建立食物的具体子类, ...
- MAC抓包工具charles(青花瓷)
下载链接:http://pan.baidu.com/s/1pL6ClBX 配置教程:http://blog.csdn.net/jiangwei0910410003/article/details/41 ...
- 通过TCP实现文件传输
import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.In ...
- 洛谷4438 [Hnoi2018]道路 【树形dp】
题目 题目太长懒得打 题解 HNOI2018惊现普及+/提高? 由最长路径很短,设\(f[i][x][y]\)表示\(i\)号点到根有\(x\)条未修公路,\(y\)条未修铁路,子树所有乡村不便利值的 ...