[luoguP3332] [ZJOI2013]K大数查询(树套树)
一开始想的是区间线段树套权值线段树,结果好像不能实现。
然后题解是权值线段树套区间线段树。
区间线段树上标记永久化就省去了pushdown的操作减少常数。
标记永久化的话。。yy不出来就看代码吧。
然后注意开long long
#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 50010
#define LL long long using namespace std; int n, m, t, cnt;
LL sum[N * 200];
int opt[N], a[N], b[N], c[N], g[N], add[N * 200], ls[N * 200], rs[N * 200], root[N << 2]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void insert2(int &now, int l, int r, int x, int y)
{
if(!now) now = ++cnt;
if(x <= l && r <= y)
{
add[now]++;
sum[now] += r - l + 1;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert2(ls[now], l, mid, x, y);
if(mid < y) insert2(rs[now], mid + 1, r, x, y);
sum[now] = sum[ls[now]] + sum[rs[now]] + (LL)(r - l + 1) * add[now];
} inline void insert1(int now, int l, int r, int d, int x, int y)
{
insert2(root[now], 1, n, x, y);
if(l == r) return;
int mid = (l + r) >> 1;
if(d <= mid) insert1(now << 1, l, mid, d, x, y);
else insert1(now << 1 | 1, mid + 1, r, d, x, y);
} inline LL query2(int now, int l, int r, int x, int y)
{
if(x <= l && r <= y) return sum[now];
LL tmp = 0;
int mid = (l + r) >> 1;
if(x <= mid) tmp += query2(ls[now], l, mid, x, y);
if(mid < y) tmp += query2(rs[now], mid + 1, r, x, y);
return tmp + (LL)(min(r, y) - max(l, x) + 1) * add[now];
} inline int query1(int now, int l, int r, LL d, int x, int y)
{
if(l == r) return l;
int mid = (l + r) >> 1;
LL tmp = query2(root[now << 1 | 1], 1, n, x, y);
if(tmp < d) return query1(now << 1, l, mid, d - tmp, x, y);
else return query1(now << 1 | 1, mid + 1, r, d, x, y);
} int main()
{
int i;
n = read();
m = read();
for(i = 1; i <= m; i++)
{
opt[i] = read();
a[i] = read(), b[i] = read(), c[i] = read();
if(opt[i] == 1) g[++t] = c[i];
}
sort(g + 1, g + t + 1);
t = unique(g + 1, g + t + 1) - g - 1;
for(i = 1; i <= m; i++)
if(opt[i] == 1)
{
c[i] = lower_bound(g + 1, g + t + 1, c[i]) - g;
insert1(1, 1, t, c[i], a[i], b[i]);
}
else printf("%d\n", g[query1(1, 1, t, c[i], a[i], b[i])]);
return 0;
}
[luoguP3332] [ZJOI2013]K大数查询(树套树)的更多相关文章
- P3332 [ZJOI2013]K大数查询(线段树套线段树+标记永久化)
P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树 把插入的值离散化一下开个线段树 蓝后每个节点开个线段树,维护一下每个数出现的区间和次数 为了防止MLE动态开点就好辣 重点是标记永久 ...
- 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- Cogs 1345. [ZJOI2013] K大数查询(树套树)
[ZJOI2013] K大数查询 /* 树套树写法. bzoj过不了. 可能有负数要离散吧. 线段树套线段树. 外层权值线段树,内层区间线段树维护标记. 对权值建一棵权值线段树. 某个点表示权值在某个 ...
- BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )
BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...
- BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 418 Solved: 235 [ Submit][ ...
随机推荐
- C#做项目时的一些经验分享
1.对于公用的类型定义,要单独抽取出来,放到单独的DLL中. 2.通过大量定义interface接口,来提高模块化程度,不同功能之间通过实现接口来面向接口编程. 3.如果项目中存在很多非常相似,但是又 ...
- android设备局域网中快速搜索之cling方式
cling方式就像pc端windows局域网工作组刷新显示一样,原来用过扫描ip地址的方式,可以使用就是有点慢,还有一种自己加入组广播,通过发送组广播的方式. android设备局域网中快速搜索之 ...
- InstallShield Limited Edition for Visual Studio 2013 图文教程打包安装包
http://www.wuleba.com/23892.html 从Visual Studio 2012开始,微软就把自家原来的安装与部署工具彻底废掉了,转而让大家去安装使用第三方的打包工具“Inst ...
- Mybatis自查询递归查找子
先看一下数据库 主键id,名称product_code,父parent,和kind 设计菜单类 setter,getter Dao public interface ProductMapper { L ...
- 第1 章初识Python
1.print()—输出 print()函数的基本用法如下: print(输出内容) 其中,输出内容可以是数字和字符串(使用引号括起来),此类内容将直接输出,也可以是包含运算符的表达式,此类内容将计算 ...
- 自动化运维工具——ansible剧本playbook(三)
一.Playbook--Ansible剧本 playbook是由一个或多个 "play"组成的列表 play的主要功能在于将事先归并为一组的主机装扮成事先通过ansible中的ta ...
- eclipse中使用git上传项目
eclipse中使用git上传项目 先需要上传到本地仓库 先找到此选项打钩 再如下 再添加的属性则可以自动填充邮箱和密码 之后 右键选择import 点击找到git 选中 下一步 如果没有找到git ...
- Python学习笔记:math模块(数学),random模块(随机数)
math模块 math模块用于数学意义上的一些计算,常用的方法有: math.pi:PI的值(3.141592653589793). math.floor(x):返回一个小于等于x的最大整数(浮点类型 ...
- python爬虫入门八:多进程/多线程
什么是多线程/多进程 引用虫师的解释: 计算机程序只不过是磁盘中可执行的,二进制(或其它类型)的数据.它们只有在被读取到内存中,被操作系统调用的时候才开始它们的生命期. 进程(有时被称为重量级进程)是 ...
- poj 2377 拉最长的线问题 kruskal算法
题意:建光纤的时候,拉一条最长的线 思路:最大生成树 将图的n个顶点看成n个孤立的连通分支,并将所有的边按权从大到小排 边权递减的顺序,如果加入边的两个端点不在同一个根节点的话加入,并且要将其连通,否 ...