【Luogu】P3155叶子的染色(树形DP)
树形DP水题qwq。
设f[i][j]是以i为根的子树,染成j色,且满足内部需求的最少染色节点数。
设to是x的子节点,那么状态转移方程如此设计:
1、f[i][0]
这个状态表示i不染色,那显然很好办,对于每个to从f[to][1],f[to][2]和f[to][0]里选一个最小的即可。
转移方程$f[x][0]=\sum\limits_{to}min(f[to][1],f[to][2],f[to][0])$
2、f[i][1]
此时i染成黑色。那么对于每个to我们发现,既可以让它继续染白,也可以把本来染成黑色的to改为无色,让染成黑色的i来发挥to的作用。
于是$f[x][1]=\sum\limits_{to}min(f[to][1]-1,f[to][2])$
f[i][2]类似,不再赘述。
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cstring>
#define maxn 50020
using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int f[maxn][];
int q[maxn]; struct Edge{
int next,to;
}edge[maxn*];
int head[maxn],num;
inline void add(int from,int to){
edge[++num]=(Edge){head[from],to};
head[from]=num;
} int root;
int m,n;
void dfs(int x,int fa){
if(x<=n){
f[x][q[x]+]=;
f[x][(q[x]^)+]=f[x][]=;
return;
}
int whi=,bla=;
for(int i=head[x];i;i=edge[i].next){
int to=edge[i].to;
if(to==fa) continue;
dfs(to,x);
f[x][]+=min(f[to][],min(f[to][],f[to][]));
whi+=min(f[to][]-,f[to][]);
bla+=min(f[to][]-,f[to][]);
}
f[x][]=whi+;
f[x][]=bla+;
return;
} int main(){
m=read(),n=read();
for(int i=;i<=n;++i) q[i]=read();
for(int i=;i<m;++i){
int from=read(),to=read();
add(from,to);
add(to,from);
}
root=n+;
dfs(root,root);
printf("%d",min(f[root][],min(f[root][],f[root][])));
return ;
} /*
10 5
1 0 1 1 0
1 6
6 2
6 3
7 6
7 4
7 10
10 9
9 8
8 5
*/
【Luogu】P3155叶子的染色(树形DP)的更多相关文章
- 【bzoj1304】[CQOI2009]叶子的染色 树形dp
题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...
- BZOJ1304: [CQOI2009]叶子的染色 树形dp
Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...
- BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
- 【Luogu】P3174毛毛虫(树形DP)
题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- Luogu P1273 有限电视网【树形Dp/树形背包】
题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...
随机推荐
- Cesium左右立体视觉续篇——遗留问题(渲染错误)以及临时替代方案
遗留问题详细说明 已解决部分 立体视觉中的视差: 横向渲染压缩. 遗留问题 1.左右分屏中的部分地图切片未渲染 问题描述:如下图(图片为解决问题后的图片),红色区域会显示黑色,无法正常显示影像.2.相 ...
- 2018.4.18 Ubuntu 的telnet命令详解
Ubuntu 的telnet命令详解 1.作用用途 Telnet 命令通常用来远程登录,Telnet 程序是基于 Telnet 协议的远程登录客户端程序.Telnet 协议是TCP/IP协议族中的一员 ...
- python_106_创建类的两种方式
class Foo(object): def __init__(self, name): self.name = name f = Foo("alex") print(type(f ...
- Makefile 编写实例
make命令常用的三个选项: 1.-k:它的作用是让make命令在发现错误的时候仍然继续执行.我们可以利用这个选项在一次操作中发现未编译成功的源文件. 2.-n:它的作用是让make命令输出将要执行的 ...
- Bootstrap历练实例:带表格的面板
带表格的面板 为了在面板中创建一个无边框的表格,我们可以在面板中使用 class .table.假设有个 <div> 包含 .panel-body,我们可以向表格的顶部添加额外的边框用来分 ...
- shell脚本,awk取奇数行与偶数行方法。
第一种方法: 第二种方法: 第三种方法:
- 使用objection来模块化开发iOS项目
转自无网不剩的博客 objection 是一个轻量级的依赖注入框架,受Guice的启发,Google Wallet 也是使用的该项目.「依赖注入」是面向对象编程的一种设计模式,用来减少代码之间的耦合度 ...
- ubuntu 16.04 + 中文输入法
在桌面右上角设置图标中找到"System Setting",双击打开. 在打开的窗口里找到"Language Support",双击打开. 可能打开会说没有安装 ...
- 【bitset 技巧 分块】bzoj5087: polycomp
神仙zq发现了${n^2\sqrt n}\over 32$做法 Description 你有三个系数为0,1的多项式f(x),g(x),h(x) 求f(g(x)) mod h(x) 为方便起见,将答案 ...
- 【构造题 贪心】cf1041E. Tree Reconstruction
比赛时候还是太慢了……要是能做快点就能上分了 Monocarp has drawn a tree (an undirected connected acyclic graph) and then ha ...