POJ3177(无向图变双连通图)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11514 | Accepted: 4946 |
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
题意:给定一个连通图,问至少加几条边可使这个图为双连通的。
思路:将原图G的双连通分量浓缩为一个点得到图G',则答案为(图G'中的叶子个数+1)/2。
存在重边
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN=;
bool mp[MAXN][MAXN];//存在重边用邻接矩阵,用int的话会MLE
int n,m;
int dfn[MAXN],low[MAXN],time;
int stack[MAXN],top;
int ins[MAXN];
int belong[MAXN],cnt;
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++time;
stack[top++]=u;
ins[u]=true;
for(int v=;v<=n;v++)
{
if(mp[u][v])
{
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(v!=fa&&ins[v]) low[u]=min(low[u],dfn[v]);
}
} if(dfn[u]==low[u])//连通分量,发现一个处理一个
{
int v;
cnt++;
do{
v=stack[--top];
ins[v]=false;
belong[v]=cnt;
}while(u!=v);
}
}
int deg[MAXN];
void cal()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(mp[i][j]&&belong[i]!=belong[j])
{
deg[belong[i]]++;
deg[belong[j]]++;
}
}
int res=;
for(int i=;i<=cnt;i++)
{
if(deg[i]==)
res++;
}
printf("%d\n",(res+)/);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(ins,false,sizeof(ins));
time=;
cnt=;
memset(belong,,sizeof(belong));
memset(mp,false,sizeof(mp));
memset(deg,,sizeof(deg));
for(int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
mp[u][v]=mp[v][u]=true;
}
tarjan(,-);
cal(); }
}
tarjan算法模板:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=;
vector<int> mp[MAXN];
int n,m;
int dfn[MAXN],low[MAXN],index;
int bridge[MAXN];
int critical[MAXN];
int root;
int stack[MAXN],top;
bool ins[MAXN];
int belong[MAXN],cnt;
void tarjan(int u,int fa)
{
stack[u]=top++;
ins[u]=true;
dfn[u]=low[u]=++index;
int son=;
for(int i=;i<mp[u].size();i++)
{
int v=mp[u][i];
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
son++;
if((u==root&&son>)||(u!=root&&dfn[u]<=low[v]))
{
critical[u]=;
}
if(dfn[u]<low[v])
{
bridge[v]=;
}
}
else if(v!=fa) low[u]=min(dfn[v],low[u]);
}
if(dfn[u]==low[u])
{
int v;
cnt++;
do{
v=stack[--top];
ins[v]=false;
belong[v]=cnt;
}while(u!=v);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
mp[u].push_back(v);
mp[v].push_back(u);
}
for(int i=;i<=n;i++)
if(!dfn[i])
{
root=i;
tarjan(i,-);
} printf("割点分别为:\n");
for(int i=;i<=n;i++)
{
if(critical[i])
printf("%d ",i);
}
printf("\n");
printf("割边一端的节点为:\n");
for(int i=;i<=n;i++)
{
if(bridge[i])
printf("%d ",i);
}
printf("\n");
printf("连通分量数目为:\n");
printf("%d\n",cnt);
return ;
}
/*
5 6
1 2
1 3
2 3
3 4
4 5
3 5
*/
POJ3177(无向图变双连通图)的更多相关文章
- POJ 3177--Redundant Paths【无向图添加最少的边成为边双连通图 && tarjan求ebc && 缩点构造缩点树】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10798 Accepted: 4626 ...
- poj3177 && poj3352 边双连通分量缩点
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12676 Accepted: 5368 ...
- poj3177(边双连通分量+缩点)
传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立 ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- 『Tarjan算法 无向图的双联通分量』
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...
- POJ3352Road Construction(构造双连通图)sdut2506完美网络
构造双连通图:一个有桥的连通图,如何把它通过加边变成边双连通图? 一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图.把每个 ...
- POJ 3177——Redundant Paths——————【加边形成边双连通图】
Redundant Paths Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- Road Construction(无向图的双连通分量)
http://poj.org/problem?id=3352 题意:给出一个有n个顶点m条边的无向连通图,问至少添加几条边,使删除任意一条边原图仍连通. 思路:一个边双连通图删除任意一条边仍为连通图. ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
随机推荐
- VSTS跟Kubernetes整合进行CI/CD
利用VSTS跟Kubernetes整合进行CI/CD 为什么VSTS要搭配Kubernetes? 通常我们在开发管理软件项目的时候都会碰到一个很头痛的问题,就是开发.测试.生产环境不一致,导致开发 ...
- Little-endian和Big-endian模式
这段C程序的结果是多少? 嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解.采用Little-endian模式的CPU对操作数的存放方式是从低字节到高字节,而Big- ...
- iOS开发 viewWillAppear:(BOOL)animated真机调试的时候不执行了怎么办
本文转载至http://blog.sina.com.cn/s/blog_a843a8850101e0g7.html 现在需要的.h文件里面加上. 然后,在需要的.m文件按里面加上关键代码:self ...
- python 基础 7.2 时间格式的相互转换
#/usr/bin/python #coding=utf-8 #@Time :2017/11/9 8:55 #@Auther :liuzhenchuan #@File :时间格式的相互转换.p ...
- VMware虚拟机下安装RedHat Linux 9.0
从这一篇文章开始我和大家一起学习Linux系统.不管是什么样的系统,必须安装上才能谈使用对吧. Linux版本 安装Linux之前需要了解一下Linux系统的安装版本. Linux的版本分为内核版本和 ...
- 九度OJ 1065:输出梯形 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5379 解决:2939 题目描述: 输入一个高度h,输出一个高为h,上底边为h的梯形. 输入: 一个整数h(1<=h<=1000 ...
- cocos2d-js添加广点通插屏(通过jsb反射机制)
1.把广点通的jar包加入libs文件夹 2.修改AndroidManifest.xml文件 添加权限: <uses-permission android:name="android. ...
- 20179209《Linux内核原理与分析》第一周作业
如何揭开Linux操作系统的最大面纱 个人认为,真正理解一个操作系统最根本的就是理解其文件系统结构. 自windows图形界面诞生,国内大多数用户都选择了windows操作系统,很多人觉得window ...
- oracle 11g ocr 冗余配置
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/royjj/article/details/30506343 oracle 11g ocr 冗余 ...
- sprint-boot @ComponentScan扫描多个包
使用@ComponentScan扫描多个包时, @ComponentScan({"ka","com"}) 注意包名不能为org,不然无法启动