POJ3177(无向图变双连通图)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11514 | Accepted: 4946 |
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
题意:给定一个连通图,问至少加几条边可使这个图为双连通的。
思路:将原图G的双连通分量浓缩为一个点得到图G',则答案为(图G'中的叶子个数+1)/2。
存在重边
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN=;
bool mp[MAXN][MAXN];//存在重边用邻接矩阵,用int的话会MLE
int n,m;
int dfn[MAXN],low[MAXN],time;
int stack[MAXN],top;
int ins[MAXN];
int belong[MAXN],cnt;
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++time;
stack[top++]=u;
ins[u]=true;
for(int v=;v<=n;v++)
{
if(mp[u][v])
{
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(v!=fa&&ins[v]) low[u]=min(low[u],dfn[v]);
}
} if(dfn[u]==low[u])//连通分量,发现一个处理一个
{
int v;
cnt++;
do{
v=stack[--top];
ins[v]=false;
belong[v]=cnt;
}while(u!=v);
}
}
int deg[MAXN];
void cal()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(mp[i][j]&&belong[i]!=belong[j])
{
deg[belong[i]]++;
deg[belong[j]]++;
}
}
int res=;
for(int i=;i<=cnt;i++)
{
if(deg[i]==)
res++;
}
printf("%d\n",(res+)/);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(ins,false,sizeof(ins));
time=;
cnt=;
memset(belong,,sizeof(belong));
memset(mp,false,sizeof(mp));
memset(deg,,sizeof(deg));
for(int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
mp[u][v]=mp[v][u]=true;
}
tarjan(,-);
cal(); }
}
tarjan算法模板:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=;
vector<int> mp[MAXN];
int n,m;
int dfn[MAXN],low[MAXN],index;
int bridge[MAXN];
int critical[MAXN];
int root;
int stack[MAXN],top;
bool ins[MAXN];
int belong[MAXN],cnt;
void tarjan(int u,int fa)
{
stack[u]=top++;
ins[u]=true;
dfn[u]=low[u]=++index;
int son=;
for(int i=;i<mp[u].size();i++)
{
int v=mp[u][i];
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
son++;
if((u==root&&son>)||(u!=root&&dfn[u]<=low[v]))
{
critical[u]=;
}
if(dfn[u]<low[v])
{
bridge[v]=;
}
}
else if(v!=fa) low[u]=min(dfn[v],low[u]);
}
if(dfn[u]==low[u])
{
int v;
cnt++;
do{
v=stack[--top];
ins[v]=false;
belong[v]=cnt;
}while(u!=v);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
mp[u].push_back(v);
mp[v].push_back(u);
}
for(int i=;i<=n;i++)
if(!dfn[i])
{
root=i;
tarjan(i,-);
} printf("割点分别为:\n");
for(int i=;i<=n;i++)
{
if(critical[i])
printf("%d ",i);
}
printf("\n");
printf("割边一端的节点为:\n");
for(int i=;i<=n;i++)
{
if(bridge[i])
printf("%d ",i);
}
printf("\n");
printf("连通分量数目为:\n");
printf("%d\n",cnt);
return ;
}
/*
5 6
1 2
1 3
2 3
3 4
4 5
3 5
*/
POJ3177(无向图变双连通图)的更多相关文章
- POJ 3177--Redundant Paths【无向图添加最少的边成为边双连通图 && tarjan求ebc && 缩点构造缩点树】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10798 Accepted: 4626 ...
- poj3177 && poj3352 边双连通分量缩点
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12676 Accepted: 5368 ...
- poj3177(边双连通分量+缩点)
传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立 ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- 『Tarjan算法 无向图的双联通分量』
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...
- POJ3352Road Construction(构造双连通图)sdut2506完美网络
构造双连通图:一个有桥的连通图,如何把它通过加边变成边双连通图? 一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图.把每个 ...
- POJ 3177——Redundant Paths——————【加边形成边双连通图】
Redundant Paths Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- Road Construction(无向图的双连通分量)
http://poj.org/problem?id=3352 题意:给出一个有n个顶点m条边的无向连通图,问至少添加几条边,使删除任意一条边原图仍连通. 思路:一个边双连通图删除任意一条边仍为连通图. ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
随机推荐
- 有一个直方图,用一个整数数组表示,其中每列的宽度为1,求所给直方图包含的最大矩形面积。比如,对于直方图[2,7,9,4],它所包含的最大矩形的面积为14(即[7,9]包涵的7x2的矩形)。给定一个直方图A及它的总宽度n,请返回最大矩形面积。保证直方图宽度小于等于500。保证结果在int范围内。
// ConsoleApplication5.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<vector> ...
- 通过PHP获取文件创建与修改时间
1.获取文件创建时间示例: 1 2 $ctime=filectime("chinawinxp.txt"); echo "创建时间:".date("Y- ...
- tao.opengl+C#绘制三维模型
一.tao.Opengl技术简介 Opengl是一种C风格的图形库,即opengl中没有类和对象,只有大量的函数.Opengl在内部就是一个状态机,利用不同的函数来修改opengl状态机的状态,以达到 ...
- 在ios中使用单例模式编程
本文转载至 http://blog.csdn.net/remote_roamer/article/details/7107007 1. @implementation Singleton ...
- 高性能流媒体服务器EasyDSS前端重构(三)- webpack + vue + AdminLTE 多页面引入 element-ui
接上篇 接上篇<高性能流媒体服务器EasyDSS前端重构(二) webpack + vue + AdminLTE 多页面提取共用文件, 优化编译时间> 本文围绕着实现EasyDSS高性能流 ...
- 九度OJ 1063:整数和 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3456 解决:2254 题目描述: 编写程序,读入一个整数N. 若N为非负数,则计算N到2N之间的整数和: 若N为一个负数,则求2N到N之间 ...
- vs2013 solution文件解析
1 定义一个project Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "render", &quo ...
- linux c编程:gdb的使用
首先用一个简单的打印字符的程序来做下示例 #include<stdio.h>#include<string.h>void main(){ int i=0; char ...
- log4j 2 入门实例(3)
继承机制 所有logger都继承自root logger. 可以认为名为log4j2learn.Hello的logger继承自名为log4j2learn的logger. log4j会先查找名称是&qu ...
- JS性能优化——数据存取
首先,了解几个概念: 字面量:它只代表自身,不存储在特定的位置.JavaScript中的字面量有:字符串.数字.布尔值.对象.数组.函数.正则,以及特殊的null和undefined值 本地变量:使用 ...