题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:

3 3
1 2 3
1 2
1 3
输出样例#1:

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000。

题目大意:求树上连续一段深度递增的路径的点权和为s的条数

题解:dfs(i)以i为起点的路径有多少条

错因:理解错了 不能用记忆化搜索

数据水暴力可过

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
#define maxn 100008
using namespace std; int n,s,sumedge;
int head[maxn],w[maxn];
long long ans; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} LL dfs(int x,int sum){
if(sum>s)return ;
if(sum==s)return ;
long long js=;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
js+=dfs(v,sum+w[v]);
}
return js;
} int main(){
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++)if(w[i]==s)ans++;else ans+=dfs(i,w[i]);
cout<<ans<<endl;
return ;
}

树上前缀和

保存搜到i之前的祖先,累加权值,是否sum[i]-sum[祖先]=s,注意搜完时删掉祖先。

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 100008
#define LL long long
using namespace std; int n,s,sumedge,cnt,js;
int head[maxn],w[maxn],dad[maxn],fa[maxn],sum[maxn];
LL ans; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} void dfs(int x){
dad[++js]=x;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
sum[v]=sum[x]+w[v];
for(int j=js;j>=;j--){//要循环到0,可能它自己的点权就是s
if(sum[v]-sum[dad[j]]==s)ans++;
if(sum[v]-sum[dad[j]]>s)break;
}
dfs(v);
}
js--;
} int main(){
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
fa[y]=x;
add(x,y);
}
sum[]=w[];
dfs();
cout<<ans<<endl;
return ;
}

洛谷P3252 [JLOI2012]树的更多相关文章

  1. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  2. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  3. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  4. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  5. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  6. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  7. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

  8. 洛谷P3830 随机树(SHOI2012)概率期望DP

    题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...

  9. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

随机推荐

  1. springboot+async异步接口实现和调用

    什么是异步调用? 异步调用是相对于同步调用而言的,同步调用是指程序按预定顺序一步步执行,每一步必须等到上一步执行完后才能执行,异步调用则无需等待上一步程序执行完即可执行. 如何实现异步调用? 多线程, ...

  2. 产生N个不重复的随机数的快速算法

    //seed array ,,,,,,,,,}; //随机数个数 ; //结果存放在里面 ]; ; i < N; i++) { //从剩下的随机数里生成 , startArray.length ...

  3. Xenomai PC开发环境

    这两天总在纠结编译一个PC机上的Xenomai开发环境,选择编译器.kernel版本和IPIP版本,但是今天忽然想到,上位机只是个开发环境,只要能编译.能运行就可以了,实时性根本不是关注的东西.而Xe ...

  4. 有关SQL注入的知识

    SQL注入攻击是非常令人讨厌的安全漏洞,是所有的web开发人员,不管是什么平台,技术,还是数据层,需要确信他们理解和防止的东西.不幸的是,开发人员往往不集中花点时间在这上面,以至他们的应用,更糟糕的是 ...

  5. 五分钟了解 Service Mesh

      1 背景   1.1 多语言   微服务理念是提倡不同业务使用最适合它的语言开发,现实情况也确实如此,尤其是AI的兴起,一般大型互联网公司存在 C/C++.Java.Golang.PHP.Pyth ...

  6. attr/attrs模块

    attr简介 开源库,提供了为函数或类提供更直接的创建属性的方法. Github or PyPi 用法 from attr import attrs, attrib @attrs class Foo: ...

  7. matlab biplot 符号的困惑

    在matlab中做Principal component Analysis 时,常要用biplot 函数来画图,表示原分量与主分量(principal component)之间的关系,以及原始观察数据 ...

  8. cocos2dx 3.2+ 项目创建与问题总汇

    本文为Cocos2d-x 3.x 全平台(Android,iOS)新手开发配置教程攻略,希望对大家有所帮助.由于这篇文章是面对新手的. 所以有些地方会啰嗦一些,请勿见怪. 假设教程中有错误.欢迎指正. ...

  9. C#下的摄像机标定

    前言:计算机视觉的基本任务之一是从摄像机获取的图像信息出发计算三维空间中物体的几何信息,并由此重建和识别物体,而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决 ...

  10. EasyNVR如何实现跨域鉴权

    EasyNVR提供简单的登录鉴权,客户端通过用户名密码登录成功后,服务端返回认证token的cookie, 后续的接口访问, 服务端从cookie读取token进行校验. 但是, 在与客户系统集成时, ...