题目描述

现在你面前有n个物品,编号分别为1,2,3,……,n。你可以在这当中任意选择任意多个物品。其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益;但是,你选择该物品以后选择的所有物品的收益都会减少Ri。现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大。

注意,收益的减少是会叠加的。比如,你选择了第i个物品,那么你就会获得了Wi的收益;然后你又选择了第j个物品,你又获得了Wj-Ri收益;之后你又选择了第k个物品,你又获得了Wk-Ri-Rj的收益;那么你获得的收益总和为Wi+(Wj-Ri)+(Wk-Ri-Rj)。

输入输出格式

输入格式:

第一行一个正整数n,表示物品的个数。

接下来第2行到第n+1行,每行两个正整数Wi和Ri,含义如题目所述。

输出格式:

输出仅一行,表示最大的收益。

输入输出样例

输入样例#1:

2
5 2
3 5
输出样例#1:

6

说明

20%的数据满足:n<=5,0<=Wi,Ri<=1000。

50%的数据满足:n<=15,0<=Wi,Ri<=1000。

100%的数据满足:n<=3000,0<=Wi,Ri<=200000。

样例解释:我们可以选择1号物品,获得了5点收益;之后我们再选择2号物品,获得3-2=1点收益。最后总的收益值为5+1=6。

题解:

贪心+dp

dfs10分 忘记全排列。

我们可知 如果固定选k个物品的话,一定不能先选r大的。如果先选,这个r将减少多个物品的价值。

首先将r从大到小排序,如果选择这个物品,那么这个物品使它被选之前的所有物品价值-r。

转移方程很好想,选这个物品和不选这个物品两个状态中选取一个最大的。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,ans,f[][];
struct E{
int w,r;
bool operator < (const E &a)const{return r>a.r;}
}s[];
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&s[i].w,&s[i].r);
sort(s+,s+n+);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
f[i][j]=max(f[i-][j],f[i-][j-]+s[i].w-s[i].r*(j-));
for(int i=;i<=n;i++)ans=max(ans,f[n][i]);
cout<<ans<<endl;
return ;
}

P2647 最大收益的更多相关文章

  1. 洛谷P2647 最大收益

    P2647 最大收益 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的 ...

  2. [luogu P2647] 最大收益(贪心+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品. ...

  3. 洛谷 P2647 最大收益

    我是题面 恩,贪心,鉴定完毕. 一个物品是否放进来,取决于它是否能对答案做出贡献. 那物品i的贡献就是\(w[i]-r[i]\) 可是收益的减少是会叠加的 那就是\(w[i]-j*r[i]\),j表示 ...

  4. 洛谷—— P2647 最大收益

    https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物 ...

  5. 洛谷 P2647 最大收益 题解

    题面 对于“n个物品选任意个”我们就可以想到一种递推方法,即设f[i][j]表示前i个物品选j个的最大收益 我们发现正着转移并不好转移,我们可以倒着转移,使选择的当前第i号物品为第一个物品,这样的话我 ...

  6. P2647 最大收益 (动态规划)

    题目链接 Solution 乍一看发现正着 DP,有明显的后效性,所以就反过来做. 但是同时发现很显然减去多的放后面明显更优,所以按 \(R\) 从大排序. 然后 \(f[i][j]\) 代表前 \( ...

  7. NOIP模拟6

    期望得分:100+100+100=300 实际得分:0+100+90=190 T1 superman 二分给每条边加多少,判断是否存在负环 #include<queue> #include ...

  8. 【洛谷P2647】最大收益

    题目大意 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益:但是,你选择该物 ...

  9. iOS绘制收益柱状图

    项目需求,参考了其他绘图demo,自己绘制出来了,不过代码改得有点乱,添加了很多变量,时间关系没用太合适的命名,逻辑处理也没进行优化. 看看效果图(虚线区域都是画的,其他区域添加的都是控件),附上源码 ...

随机推荐

  1. 1.【nuxt起步】-nuxt是什么?

    百度了解下,简单说就是vue的seo化,因为vue是spa,不支持seo,从本地运行的源码可以看出来,html没有tkd和相关文字,导致百度收录困难,所以nuxt可以很好的解决这个问题, 举个例子:纯 ...

  2. from: 关于RabbitMQ

    from: http://lynnkong.iteye.com/blog/1699684 1      什么是RabbitMQ? RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种, ...

  3. Windows 如何为绿色软件运行时添加参数 如最小化,无窗口运行

    1 有些软件运行的时候需要或者可以添加参数来实现一些特殊要求,比如开机自启动,运行时不显示主界面,不显示托盘图标等,比如下面的这个流量精灵软件,"urlcore.exe /h /r /t 4 ...

  4. SASS入门之SASS安装

    当然...凭借我这样的肤浅的智商,根本不能理解什么叫certificate verfiy fail... 所以找了一段时间的方法,最后最终在一个sass群里找到了... 发在这里纯属作为自己的一个学习 ...

  5. python(17)- 迭代器和生成器及应用

    什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前退) 2.可迭代对象 ...

  6. opencv yuv420与Mat互转

    项目用到opencv 融合图片的功能,经过一天的调试,达到预期目标,先将如何调用opencv库实现YUV42与Mat互转记录下来. 一.下载opencv编译的库下载地址是:http://opencv. ...

  7. PHP中的$_SERVER['PATH_INFO']

    PHP中的全局变量$_SERVER['PATH_INFO']是一个很有用的参数,众多的CMS系统在美化自己的URL的时候,都用到了这个参数. 对于下面这个网址: http://www.test.com ...

  8. MySQL-获取某天的数据

    今天 select * from 表名 where to_days(时间字段名) = to_days(now()); 昨天 近7天 DAY) <= date(时间字段名) 近30天 DAY) & ...

  9. input 的read only 和 disable的区别

    read only ---------->只能读,不能操作,但是数据可以提交 disable -------------->控件被禁用,数据不能提交

  10. vim 插件: ctrlp.vim

    vim-scripts 里可以搜到这个插件. 安装好了之后,在 vim 的 normal 模式之下按 Ctrl+P 组合键即可弹出搜索窗口. * <f5> 更新目录缓存. * <c- ...