2119: 股市的预测

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 434  Solved: 200
[Submit][Status][Discuss]

Description

墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势。股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况。经过长时间的观测,墨墨发现很多股票都有如下的规律:之前的走势很可能在短时间内重现!如图可以看到这只股票A部分的股价和C部分的股价的走势如出一辙。通过这个观测,墨墨认为他可能找到了一个预测股票未来走势的方法。进一步的研究可是难住了墨墨,他本想试图统计B部分的长度与发生这种情况的概率关系,不过由于数据量过于庞大,依赖人脑的力量难以完成,于是墨墨找到了善于编程的你,请你帮他找一找给定重现的间隔(B部分的长度),有多少个时间段满足首尾部分的走势完全相同呢?当然,首尾部分的长度不能为零。

Input

输入的第一行包含两个整数N、M,分别表示需要统计的总时间以及重现的间隔(B部分的长度)。接下来N行,每行一个整数,代表每一个时间点的股价。

Output

输出一个整数,表示满足条件的时间段的个数

Sample Input

12 4
1 2 3 4 8 9 1 2 3 4 8 9

Sample Output

6
【样例说明】
6个时间段分别是:3-9、2-10、2-8、1-9、3-11、4-12。

HINT

对于100%的数据,4≤N≤50000 1≤M≤10 M≤N 所有出现的整数均不超过32位含符号整数。

Source

题意:趋势跟斜率有关,既然单位时间为1,那斜率只与Δy有关,差分之后再丢掉第一个点,变成了求 ABA 这样子串个数。|B|=m,|A|>0

想法:求ABA,先想到两个暴力:

1、枚举区间,SA+ST O(1)判断。O(n^2)

2、枚举长度以及起点,O(n^2)

然后优化第二个:不枚举起点。每隔 L 长度就设置一个哨兵。如果枚举起点的话,所有ABA中第一个A都会经过这个哨兵,并且是连续的。

于是可以这样统计多少个起点合法:L=lcs([1...x],[1...x+l+m]),R=lcp([x....n],[x+l+m...n]。防止越界没有保证|B|=m,L=min(L,l),R=min(R,l)

ans+=L+R-l。

所以一个哨兵O(1)回答,共(n/1+n/2+n/3.....1)≈O(nlogn)个哨兵。最后复杂度O(nlogn)。

记得要离散....

#include<cstdio>
#include<cstring>
#include<algorithm> typedef long long ll;
const int len();
ll a[len+],d[len+],ans;
int n,B,id[len+];
struct AXLE
{
ll a[len+];int up;
void deal()
{
for(int i=;i<=n;i++)a[++up]=d[i];
std::sort(a+,a++up);
int _up=;
for(int i=;i<=up;i++)if(a[i]!=a[i-])a[++_up]=a[i];
up=_up;
}
int two(ll x)
{
int ans=up;
for(int l=,r=up,mid;l<=r;)
if(a[mid=(l+r)>>]<=x)l=mid+,ans=mid;else r=mid-;
return ans;
}
}axle; int cnt[len+],tmp[len+],p[len+],f[][len+],logg[len+];
void swap(int &x,int &y){x^=y;y^=x;x^=y;}
int min(int a,int b){return a>b?b:a;}
int max(int a,int b){return a<b?b:a;}
void Fdeal()
{
logg[]=-;
for(int i=;i<=n;i++)logg[i]=logg[i>>]+,f[][i]=i+;
for(int j=;j<=logg[n];j++)
for(int i=;i<=n;i++)f[j][i]=f[j-][ f[j-][i] ];
}
struct SA
{
int str[len+],now,limt;
int sfa[len+],rank[len+],height[len+];
void put(int ty)
{
if(ty)for(int i=;i<=n;i++)str[i]=d[i];
else for(int i=;i<=n;i++)str[i]=d[n-i+];
now=n;limt=axle.up;
// fprintf(stderr,"now=%d\n",now);
}
bool cmp(int x,int y,int l){return x+l<=now&&y+l<=now&&rank[x]==rank[y]&&rank[x+l]==rank[y+l];}
void doubling()
{
// fprintf(stderr,"doubling\n");
// fprintf(stderr,"now=%d\n",now);
for(int i=;i<=now;i++)rank[i]=str[i],sfa[i]=i;
for(int l=,pos=,sigma=limt;pos<now;sigma=pos)
{
pos=;
for(int i=now-l+;i<=now;i++)p[++pos]=i;
for(int i=;i<=now;i++)if(sfa[i]>l)p[++pos]=sfa[i]-l;
memset(cnt,,sizeof(int)*(sigma+)); pos=;
for(int i=;i<=now;i++)cnt[rank[i]]++;
for(int i=;i<=sigma;i++)cnt[i]+=cnt[i-];
for(int i=now;i>=;i--)sfa[cnt[rank[p[i]]]--]=p[i];
for(int i=;i<=now;i++)tmp[sfa[i]]=cmp(sfa[i],sfa[i-],l)?pos:++pos;
for(int i=;i<=now;i++)rank[i]=tmp[i];
l=!l?:l<<;
}
for(int i=;i<=now;i++)rank[sfa[i]]=i;
for(int i=,j,k;i<=now;i++)
{
k=sfa[rank[i]-]; if(!k)continue;
j=height[rank[i-]]; if(j)j--;
while(str[i+j]==str[k+j])
j++;
height[rank[i]]=j;
}
// fprintf(stderr,"now=%d\n",now);
// for(int i=1;i<=now;i++)
// fprintf(stderr,"h=%d\n",height[i]);
}
int g[][len+];
//lcp(x,y)=min[x,y-1]
void Gdeal()
{
for(int i=;i<=now;i++)g[][i]=height[i+];
for(int j=;j<=logg[now];j++)
for(int i=;i<=now;i++) g[j][i]=min(g[j-][i],g[j-][ f[j-][i] ]);
}
int lcp(int x,int y)
{
// fprintf(stderr,"1:x= %d y=%d\n",x,y);
x=rank[x];y=rank[y];
if(x>y)swap(x,y); y--;
// fprintf(stderr,"2:x= %d y=%d\n",x,y);
// for(int i=x+1;i<=y;i++)
// fprintf(stderr,"3:h=%d\n",height[i]);
int k=logg[y-x+];
int w=<<k;
return min(g[k][x],g[k][y-w+]);
}
void build(int ty)
{
put(ty); doubling(); Gdeal();
}
}pre,suc;
int main()
{
scanf("%d %d",&n,&B);
for(int i=;i<=n;i++)scanf("%lld",a+i),d[i-]=a[i]-a[i-];
n--;axle.deal();
// fprintf(stderr,"n=%d B=%d\n",n,B);
for(int i=;i<=n;i++)d[i]=axle.two(d[i]);
Fdeal(); pre.build(); suc.build();
for(int l=,LL,RR;l+l+B<=n;l++)
for(int i=l,x,y;i+l+B-<=n;i+=l)
{
// fprintf(stderr,"x= %d y= %d\n",i,i+l+B);
x=i; y=i+l+B;
LL=pre.lcp(n-y+,n-x+); RR=suc.lcp(x,y);
// fprintf(stderr,"LL= %d RR= %d l=%d\n",LL,RR,l);
ans+=max(,min(LL,l)+min(RR,l)-l);
// fprintf(stderr,"ans=%lld\n",ans);
}
printf("%lld",ans);
return ;
}

BZOJ 2119: 股市的预测 SA的更多相关文章

  1. BZOJ 2119: 股市的预测 [后缀数组 ST表]

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 331  Solved: 153[Submit][Status][Discuss ...

  2. bzoj 2119: 股市的预测

    Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...

  3. ●BZOJ 2119 股市的预测

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2119 题解: 这个题很好的. 首先把序列转化为差分序列,问题转化为找到合法的子序列,使得去除 ...

  4. bzoj 2119 股市的预测——枚举长度的关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 就是找差分序列上中间差 m 的相等的两段. 考虑枚举这样一段的长度 L .可以把序列分 ...

  5. bzoj 2119 股市的预测 —— 枚举关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 思路就是对于这个形如 ABA 的串,枚举 A 的长度,并按照长度分出几块,找到一些关键 ...

  6. BZOJ 2119 股市的预测 (后缀数组+RMQ)

    题目大意:求一个字符串中形如$ABA$的串的数量,其中$B$的长度是给定的 有点像[NOI2016]优秀的拆分这道题 先对序列打差分,然后离散,再正反跑$SA$,跑出$st$表 进入正题 $ABA$串 ...

  7. BZOJ 2119 股市的预测(后缀数组)

    首先要差分+离散化. 然后就是求形如ABA的串有多少,其中B的长度确定为k. 我们用到了设置关键点的思想.我们枚举A的长度L.然后在\(1,1+L,1+L*2,1+L*3...\)设置关键点.然后我们 ...

  8. BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)

    转博客大法好 自己画一画看一看,就会体会到这个设置关键点的强大之处了. CODE(sa) O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms #inclu ...

  9. 【BZOJ 2119】 2119: 股市的预测 (后缀数组+分块+RMQ)

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 404  Solved: 188 Description 墨墨的妈妈热爱炒股,她 ...

随机推荐

  1. java之数学方法

    参考http://how2j.cn/k/number-string/number-string-math/319.html java.lang.Math提供了一些常用的数学运算方法,并且都是以静态方法 ...

  2. 7.22实习培训日志-JSP Servlet

    周末总结 今天下午在学习servlet,想自己做一个简单的例子,于是用idea新建一个maven项目,为了后文叙述方便,我们取名为项目1,点击create from archetype,我先选择org ...

  3. DOM,date,字符串

    ECMAscript Dom doc Bom Browerwindow --窗口. location --地址栏. history --历史. document --文档. statue --任务栏& ...

  4. HDU - 6341 多校4 Let Sudoku Rotate(状压dfs)

    Problem J. Let Sudoku Rotate Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  5. std::function"函数"对象包装器

    语义: 类模板std::function是可调用对象的包装器,可以包装除了类成员之外的所有可调用对象.包括,普通函数,函数指针,lambda,仿函数.通过指定的模板参数,它可以用统一的方式保存,并延迟 ...

  6. UNPIVOT逆透视以及动态逆透视存储过程

    前几天一直练习PIVOT透视,还实现了动态透视的存过程<动态透视表>https://www.cnblogs.com/insus/p/10888277.html 今天练习MS SQL Ser ...

  7. es6 reduce的用法

    一.forEach回调函数参数,item(数组元素).index(序列).arr(数组本身)循环数组,无返回值,不改变原数组不支持return操作输出,return只用于控制循环是否跳出当前循环 二. ...

  8. DOM的学习网站 DOM是HTML和XML的编程接口

  9. 双系统安装Linux的步骤以及一些误区

    1.一次安装失败引发的思考 笔者安装双系统(Windows 7+ Ubuntu 16.01)时参考了如何安装win10和linux [ubuntu14]双系统这篇百度经验,却发现安装后并没有如期进入U ...

  10. render函数和redirect函数的区别+反向解析

    render函数和redirect函数的区别+反向解析 1.视图函数:一定是要包含两个对象的(render源码里面有HttpResponse对象)   request对象:----->所有的请求 ...