2119: 股市的预测

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 434  Solved: 200
[Submit][Status][Discuss]

Description

墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势。股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况。经过长时间的观测,墨墨发现很多股票都有如下的规律:之前的走势很可能在短时间内重现!如图可以看到这只股票A部分的股价和C部分的股价的走势如出一辙。通过这个观测,墨墨认为他可能找到了一个预测股票未来走势的方法。进一步的研究可是难住了墨墨,他本想试图统计B部分的长度与发生这种情况的概率关系,不过由于数据量过于庞大,依赖人脑的力量难以完成,于是墨墨找到了善于编程的你,请你帮他找一找给定重现的间隔(B部分的长度),有多少个时间段满足首尾部分的走势完全相同呢?当然,首尾部分的长度不能为零。

Input

输入的第一行包含两个整数N、M,分别表示需要统计的总时间以及重现的间隔(B部分的长度)。接下来N行,每行一个整数,代表每一个时间点的股价。

Output

输出一个整数,表示满足条件的时间段的个数

Sample Input

12 4
1 2 3 4 8 9 1 2 3 4 8 9

Sample Output

6
【样例说明】
6个时间段分别是:3-9、2-10、2-8、1-9、3-11、4-12。

HINT

对于100%的数据,4≤N≤50000 1≤M≤10 M≤N 所有出现的整数均不超过32位含符号整数。

Source

题意:趋势跟斜率有关,既然单位时间为1,那斜率只与Δy有关,差分之后再丢掉第一个点,变成了求 ABA 这样子串个数。|B|=m,|A|>0

想法:求ABA,先想到两个暴力:

1、枚举区间,SA+ST O(1)判断。O(n^2)

2、枚举长度以及起点,O(n^2)

然后优化第二个:不枚举起点。每隔 L 长度就设置一个哨兵。如果枚举起点的话,所有ABA中第一个A都会经过这个哨兵,并且是连续的。

于是可以这样统计多少个起点合法:L=lcs([1...x],[1...x+l+m]),R=lcp([x....n],[x+l+m...n]。防止越界没有保证|B|=m,L=min(L,l),R=min(R,l)

ans+=L+R-l。

所以一个哨兵O(1)回答,共(n/1+n/2+n/3.....1)≈O(nlogn)个哨兵。最后复杂度O(nlogn)。

记得要离散....

#include<cstdio>
#include<cstring>
#include<algorithm> typedef long long ll;
const int len();
ll a[len+],d[len+],ans;
int n,B,id[len+];
struct AXLE
{
ll a[len+];int up;
void deal()
{
for(int i=;i<=n;i++)a[++up]=d[i];
std::sort(a+,a++up);
int _up=;
for(int i=;i<=up;i++)if(a[i]!=a[i-])a[++_up]=a[i];
up=_up;
}
int two(ll x)
{
int ans=up;
for(int l=,r=up,mid;l<=r;)
if(a[mid=(l+r)>>]<=x)l=mid+,ans=mid;else r=mid-;
return ans;
}
}axle; int cnt[len+],tmp[len+],p[len+],f[][len+],logg[len+];
void swap(int &x,int &y){x^=y;y^=x;x^=y;}
int min(int a,int b){return a>b?b:a;}
int max(int a,int b){return a<b?b:a;}
void Fdeal()
{
logg[]=-;
for(int i=;i<=n;i++)logg[i]=logg[i>>]+,f[][i]=i+;
for(int j=;j<=logg[n];j++)
for(int i=;i<=n;i++)f[j][i]=f[j-][ f[j-][i] ];
}
struct SA
{
int str[len+],now,limt;
int sfa[len+],rank[len+],height[len+];
void put(int ty)
{
if(ty)for(int i=;i<=n;i++)str[i]=d[i];
else for(int i=;i<=n;i++)str[i]=d[n-i+];
now=n;limt=axle.up;
// fprintf(stderr,"now=%d\n",now);
}
bool cmp(int x,int y,int l){return x+l<=now&&y+l<=now&&rank[x]==rank[y]&&rank[x+l]==rank[y+l];}
void doubling()
{
// fprintf(stderr,"doubling\n");
// fprintf(stderr,"now=%d\n",now);
for(int i=;i<=now;i++)rank[i]=str[i],sfa[i]=i;
for(int l=,pos=,sigma=limt;pos<now;sigma=pos)
{
pos=;
for(int i=now-l+;i<=now;i++)p[++pos]=i;
for(int i=;i<=now;i++)if(sfa[i]>l)p[++pos]=sfa[i]-l;
memset(cnt,,sizeof(int)*(sigma+)); pos=;
for(int i=;i<=now;i++)cnt[rank[i]]++;
for(int i=;i<=sigma;i++)cnt[i]+=cnt[i-];
for(int i=now;i>=;i--)sfa[cnt[rank[p[i]]]--]=p[i];
for(int i=;i<=now;i++)tmp[sfa[i]]=cmp(sfa[i],sfa[i-],l)?pos:++pos;
for(int i=;i<=now;i++)rank[i]=tmp[i];
l=!l?:l<<;
}
for(int i=;i<=now;i++)rank[sfa[i]]=i;
for(int i=,j,k;i<=now;i++)
{
k=sfa[rank[i]-]; if(!k)continue;
j=height[rank[i-]]; if(j)j--;
while(str[i+j]==str[k+j])
j++;
height[rank[i]]=j;
}
// fprintf(stderr,"now=%d\n",now);
// for(int i=1;i<=now;i++)
// fprintf(stderr,"h=%d\n",height[i]);
}
int g[][len+];
//lcp(x,y)=min[x,y-1]
void Gdeal()
{
for(int i=;i<=now;i++)g[][i]=height[i+];
for(int j=;j<=logg[now];j++)
for(int i=;i<=now;i++) g[j][i]=min(g[j-][i],g[j-][ f[j-][i] ]);
}
int lcp(int x,int y)
{
// fprintf(stderr,"1:x= %d y=%d\n",x,y);
x=rank[x];y=rank[y];
if(x>y)swap(x,y); y--;
// fprintf(stderr,"2:x= %d y=%d\n",x,y);
// for(int i=x+1;i<=y;i++)
// fprintf(stderr,"3:h=%d\n",height[i]);
int k=logg[y-x+];
int w=<<k;
return min(g[k][x],g[k][y-w+]);
}
void build(int ty)
{
put(ty); doubling(); Gdeal();
}
}pre,suc;
int main()
{
scanf("%d %d",&n,&B);
for(int i=;i<=n;i++)scanf("%lld",a+i),d[i-]=a[i]-a[i-];
n--;axle.deal();
// fprintf(stderr,"n=%d B=%d\n",n,B);
for(int i=;i<=n;i++)d[i]=axle.two(d[i]);
Fdeal(); pre.build(); suc.build();
for(int l=,LL,RR;l+l+B<=n;l++)
for(int i=l,x,y;i+l+B-<=n;i+=l)
{
// fprintf(stderr,"x= %d y= %d\n",i,i+l+B);
x=i; y=i+l+B;
LL=pre.lcp(n-y+,n-x+); RR=suc.lcp(x,y);
// fprintf(stderr,"LL= %d RR= %d l=%d\n",LL,RR,l);
ans+=max(,min(LL,l)+min(RR,l)-l);
// fprintf(stderr,"ans=%lld\n",ans);
}
printf("%lld",ans);
return ;
}

BZOJ 2119: 股市的预测 SA的更多相关文章

  1. BZOJ 2119: 股市的预测 [后缀数组 ST表]

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 331  Solved: 153[Submit][Status][Discuss ...

  2. bzoj 2119: 股市的预测

    Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...

  3. ●BZOJ 2119 股市的预测

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2119 题解: 这个题很好的. 首先把序列转化为差分序列,问题转化为找到合法的子序列,使得去除 ...

  4. bzoj 2119 股市的预测——枚举长度的关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 就是找差分序列上中间差 m 的相等的两段. 考虑枚举这样一段的长度 L .可以把序列分 ...

  5. bzoj 2119 股市的预测 —— 枚举关键点+后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 思路就是对于这个形如 ABA 的串,枚举 A 的长度,并按照长度分出几块,找到一些关键 ...

  6. BZOJ 2119 股市的预测 (后缀数组+RMQ)

    题目大意:求一个字符串中形如$ABA$的串的数量,其中$B$的长度是给定的 有点像[NOI2016]优秀的拆分这道题 先对序列打差分,然后离散,再正反跑$SA$,跑出$st$表 进入正题 $ABA$串 ...

  7. BZOJ 2119 股市的预测(后缀数组)

    首先要差分+离散化. 然后就是求形如ABA的串有多少,其中B的长度确定为k. 我们用到了设置关键点的思想.我们枚举A的长度L.然后在\(1,1+L,1+L*2,1+L*3...\)设置关键点.然后我们 ...

  8. BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)

    转博客大法好 自己画一画看一看,就会体会到这个设置关键点的强大之处了. CODE(sa) O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms #inclu ...

  9. 【BZOJ 2119】 2119: 股市的预测 (后缀数组+分块+RMQ)

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 404  Solved: 188 Description 墨墨的妈妈热爱炒股,她 ...

随机推荐

  1. Matcher的replaceAll ()/appendReplacement()/appendTail()详细举例

    直接上例子: package com.dajiangtai.djt_spider.util; import java.util.regex.Matcher;import java.util.regex ...

  2. go语言中将函数作为变量传递

    在Go中函数也是一种变量,我们可以通过type来定义它,它的类型就是所有拥有相同的参数,相同的返回值的一种类型,函数当做值和类型在我们写一些通用接口的时候非常有用,通过下面这个例子我们可以看到test ...

  3. iOS证书和描述文件的配置

    1.登录Apple开发者账号,进入Apple Developer主页,点击Account 2.点击Certificates,ID&Profiles 3.生成CRS文件 1.打开mac上的钥匙串 ...

  4. 当Python中混进一只薛定谔的猫……

    本文原创并首发于公众号[Python猫],未经授权,请勿转载. 原文地址:https://mp.weixin.qq.com/s/-fFVTgWVsydFsNu1nyxUzA Python 是一门强大的 ...

  5. display:block inline-block inlined的区别

    一.首先要了解什么是块级元素与行级元素 块级元素 会占领页面的一行,其后多个block元素自动换行. 可以设置width,height,设置了width后同样也占领一行.同样也可以设置   margi ...

  6. git (Linux安装及使用教程)

    查看当前服务器是否有安装git git --version 如果有,那么查看版本号,是否是你想要的或最新的版本 如果不是自己想要的版本,那么执行以下命令可卸载当前版本 yum remove git 卸 ...

  7. [UE4]C++实现动态加载的问题:LoadClass()和LoadObject()

    http://aigo.iteye.com/blog/2281558 原文作者:@玄冬Wong 相关内容:C++静态加载问题:ConstructorHelpers::FClassFinder()和FO ...

  8. poj1837 Balance

    Balance  POJ - 1837 题目大意: 有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数. 其中可以把天枰看做一个以x轴0点 ...

  9. jQuery EasyUI/TopJUI创建树形表格下拉框

    jQuery EasyUI/TopJUI创建树形表格下拉框 第一种方法(纯HTML创建) <div class="topjui-row"> <div class= ...

  10. CC08:翻转子串

    题目 假定我们都知道非常高效的算法来检查一个单词是否为其他字符串的子串.请将这个算法编写成一个函数,给定两个字符串s1和s2,请编写代码检查s2是否为s1旋转而成,要求只能调用一次检查子串的函数. 给 ...