2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记

Solution
分数规划经典题. 话说我怎么老是忘记分数规划怎么做呀...
所以这里就大概写一下分数规划咯:
分数规划解决的是这样一类问题: 有\(a_1, a_2 ... a_n\)和\(b_1, b_2 ... b_n\)这样一些值(其中\(b\)严格大于零), 其中\(a\)和\(b\)之间存在某种联系; 要你决策出每个\(a_k\), 使得
\]
取得最大值或最小值.
考虑怎样解决: 考虑二分\(ans\), 找到一个最大的\(ans\)使得
\]
稍作变换, 得到
\sum_{x = 1}^n a_x - b_x \times ans \ge 0
\]
在每个位置\(i\)上决策\(a\)和\(b\)即可.
换到这一题, 直接照搬上述思路即可, 不再赘述了.
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1; char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = 500;
int suc[N + 1][2], a[N + 1], b[N + 1], sz[N + 1];
double f[N << 2][N + 2];
int main()
{
#ifndef ONLINE_JUDGE
freopen("zs.in", "r", stdin);
freopen("zs.out", "w", stdout);
#endif
using namespace Zeonfai;
int n = getInt(), cnt = n;
for(int i = 1; i <= n; ++ i)
{
for(int j = 0; j < 2; ++ j)
{
_suc[i][j] = getInt();
if(! _suc[i][j]) suc[i][j] = ++ cnt;
}
a[i] = getInt(); b[i] = getInt();
}
for(int i = cnt; i > n; -- i) sz[i] = 1;
for(int i = n; i; -- i) sz[i] = sz[suc[i][0]] + sz[suc[i][1]];
double L = 0, R = 10, ans;
while(R - L > 1e-5)
{
double mid = (R + L) / 2;
for(int i = 1; i <= n; ++ i) for(int j = 0; j <= n + 1; ++ j) f[i][j] = - 1e9;
for(int i = cnt; i > n; -- i) for(int j = 0; j < 2; ++ j) f[i][j] = 0;
for(int i = n; i; -- i) for(int j = 0; j <= sz[suc[i][0]]; ++ j) for(int k = 0; k <= sz[suc[i][1]]; ++ k)
f[i][j + k] = max(f[i][j + k], f[suc[i][0]][j] + f[suc[i][1]][k] + abs(j - k) * a[i] - mid * (j ^ k ^ b[i]));
int flg = 0;
for(int i = 0; i <= sz[1]; ++ i) if(f[1][i] >= mid) flg = 1;
if(flg) ans = mid, L = mid; else R = mid;
}
printf("%.2lf\n", ans);
}
2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记的更多相关文章
- 2016集训测试赛(二十六)Problem A: bar
Solution 首先审清题意, 这里要求的是子串而不是子序列... 我们考虑用1表示p, -1表示j. 用sum[i]表示字符串前\(i\)的前缀和. 则我们考虑一个字符串\([L, R]\)有什么 ...
- 2016集训测试赛(二十四)Problem B: Prz
Solution 这道题有两个关键点: 如何找到以原串某一个位置为结尾的某个子序列的最晚出现位置 如何找到原串中某个位置之前的所有数字的最晚出现位置中的最大值 第一个关键点: 我们注意到每个数字在\( ...
- 2016集训测试赛(二十四)Problem C: 棋盘控制
Solution 场上的想法(显然是错的)是这样的: 我们假设棋子是一个一个地放置的, 考虑在放置棋子的过程中可能出现哪些状态. 我们令有序整数对\((i, j)\)表示总共控制了\(i\)行\(j\ ...
- 2016集训测试赛(十九)Problem C: 无聊的字符串
Solution 傻X题 我的方法是建立后缀后缀树, 然后在DFS序列上直接二分即可. 关键在于如何得到后缀树上每个字符对应的字节点: 我们要在后缀自动机上记录每个点在后缀树上对应的字母. 考虑如何实 ...
- 2016集训测试赛(十九)Problem A: 24点大师
Solution 这到题目有意思. 首先题目描述给我们提供了一种非常管用的模型. 按照题目的方法, 我们可以轻松用暴力解决20+的问题; 关键在于如何构造更大的情况: 我们发现 \[ [(n + n) ...
- 2016集训测试赛(二十)Problem B: 字典树
题目大意 你们自己感受一下原题的画风... 我怀疑出题人当年就是语文爆零的 下面复述一下出题人的意思: 操作1: 给你一个点集, 要你在trie上找到所有这样的点, 满足点集中存在某个点所表示的字符串 ...
- 2016集训测试赛(二十)Problem A: Y队列
Solution 考虑给定一个\(n\), 如何求\(1\)到\(n\)的正整数中有多少在队列中. 不难注意到我们只需要处理质数次方的情况即可, 因为合数次方会被其因数处理到. 同时我们考虑到可能存在 ...
- 2016北京集训测试赛(八)Problem C: 直径
Solution 一个定理: 把两棵树用一条边练成一棵树后, 树的直径在原来两棵树的四个直径端点中产生. 放到这一题, 我们通过DP先求出大树中以每个点为根的子树中的直径, 再取每棵小树中与其他树有连 ...
- 【2016北京集训测试赛(八)】 crash的数列 (思考题)
Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多 ...
随机推荐
- mysql进阶二
数据库存储数据的特点: 1.数据存放到表中,然后表再放到库中 2.一个库中可以有多张表,每张表具有唯一的表名来标识自己 3.表中有一个或多个列,列又称为“字段” 数据库常见的管理系统 mysql.or ...
- MySQL基础9-主键约束、外键约束、等值连接查询、一对一和多对多关系
1.主键约束和外键约束 外键约束 * 外键必须是另一表的主键的值(外键要引用主键!) * 外键可以重复 * 外键可以为空 * 一张表中可以有多个外键! 概念模型在数据库中成为表 数据库表中的多对一关系 ...
- leetcode 【 Best Time to Buy and Sell Stock III 】python 实现
题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...
- copy & deepcopy
1 import copy 2 3 字典参照列表结论,看是否有深层嵌套. 4 a = {'name':1,'age':2} 5 b = a 6 a['name'] = 'ff' 7 print(a) ...
- ThinkPHP5 配置文件
配置目录 系统默认的配置文件目录就是应用目录(APP_PATH),也就是默认的application下面,并分为应用配置(整个应用有效)和模块配置(仅针对该模块有效). ├─application 应 ...
- js跨域post请求
function funPostBack(srvMethod){ /* var contentNR=$(document.getElementById("reportFrame") ...
- python 文件(file)操作
操作文件的一般流程有: 打开文件.文件处理.关闭文件 开开文件的模式有: r,只读模式(默认). w,只写模式.[不可读:不存在则创建:存在则删除内容:] a,追加模式.[不可读: 不存在则创建:存在 ...
- springboot添加事务
(转自:http://www.cnblogs.com/xingzc/p/6029483.html) 什么是事务? 我们在开发企业应用时,对于业务人员的一个操作实际是对数据读写的多步操作的结合.由于数据 ...
- 多线程(继承Thread)
/** *Thread的常用方法 *1.start(),启动线程再执行run方法 *2.run():子线程要执行的代码放入run()方法中 *3.currentThread()静态的,调取当前线程,返 ...
- 论文笔记(一)Re-ranking by Multi-feature Fusion with Diffusion for Image Retrieval
0x00 预备知识 $\DeclareMathOperator{\vol}{vol}$ 无向图上的随机游走 无向图 $G=(V,E)$,边权函数 $w\colon V\times V \to R_+$ ...