整数的lqp拆分
题目大意
lqp在为出题而烦恼,他完全没有头绪,好烦啊…
他首先想到了整数拆分。整数拆分是个很有趣的问题。给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的。
然后lqp又想到了斐波那契数。定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),Fn就是斐波那契数的第n项。但是求出第n项斐波那契数似乎也不怎么困难…
lqp为了增加选手们比赛的欲望,于是绞尽脑汁,想出了一个有趣的整数拆分,我们暂且叫它:整数的lqp拆分。和一般的整数拆分一样,整数的lqp拆分是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。但是整数的lqp拆分要求的不是拆分总数,相对更加困难一些。对于每个拆分,lqp定义这个拆分的权值Fa1Fa2…Fam,他想知道对于所有的拆分,他们的权值之和是多少?简单来说,就是求
由于这个数会十分大,lqp稍稍简化了一下题目,只要输出对于N的整数lqp拆分的权值和mod (109+7)输出即可。
关于输入
输入的第一行包含一个整数N。
关于输出
输出一个整数,为对于N的整数lqp拆分的权值和mod (109+7)。
样例输入
3
样例输出
5
数据范围
30%: 0<N<=1000
100%: N<106
题解:
可以发现这是一个数列,递推式为:a[n]=2*a[n-1]+a[n-2]
#include<cstdio>
#include<iostream>
#define mod 1000000007
using namespace std;
typedef long long lol;
lol f[],n;
int main()
{
scanf("%lld",&n);
f[]=;
for(lol i=;i<=n;i++)f[i]=(*f[i-]+f[i-])%mod;
printf("%lld\n",f[n]);
}
整数的lqp拆分的更多相关文章
- [BZOJ2173]整数的lqp拆分
[题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...
- BZOJ 2173: 整数的lqp拆分( dp )
靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...
- BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分
整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...
- 打表\数学【bzoj2173】: 整数的lqp拆分
2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...
- BZOJ2173 整数的lqp拆分(生成函数)
首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少.(虽然不用递推式也能显然地知道答案是2n-1). 类似地,lqp拆分有递推式f(n)=Σf ...
- [国家集训队]整数的lqp拆分
我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...
- BZOJ 2173 整数的lqp拆分
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2173 题意:给出输出n.设一种拆分为n=x1+x2+x3,那么这种拆分的价值为F(x1) ...
- 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]
传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...
- Luogu4451 [国家集训队]整数的lqp拆分
题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数 ...
随机推荐
- 构建基于虚拟用户的vsftpd服务器
安装: [root@server ~]# yum install -y vsftpd [root@server ~]# rpm -ql vsftpd /etc/logrotate.d/vsftpd / ...
- VirtualBox下安装MacOS11
8.键盘选中 “简体中文” -- > "拼音模式".VirtualBox安装Mac OS 10.11 ,安装日期:2016 / 5 / 14 用虚拟机装黑苹果本人也装了不下3 ...
- dataguard 下主备 online redo 与 standby redo log resize 重建
环境说明: 本实验环境是一个节点的rac + 单节点 asm dg database 与 grid 版本是 11.2.0.4 .提别提醒 如果是多节点集群,操作时需要特别注意 thread . ...
- BZOJ3938:Robot
浅谈标记永久化:https://www.cnblogs.com/AKMer/p/10137227.html 题目传送门:https://www.lydsy.com/JudgeOnline/proble ...
- Camera Vision - video surveillance on C#
转自:http://blog.csdn.net/xyz_lmn/article/details/6072897 http://www.codeproject.com/KB/audio-video/ca ...
- bzoj3629
dfs 跟上道题很像有木有 同样地,我们暴力枚举约数 根据约数和公式,得出$S=\prod_{i=1}^{n}{(1+p+p^{2}+...+p^{a_{i}})}$ 所以每次我们暴力枚举是哪个约数, ...
- 创建oracle数据库图示(一步一步教你安装oracle)
123456 密码 版权声明:本文为博主原创文章,未经博主允许不得转载.
- 在GridView的RowDataBound事件中获取某行某列的值!
protected void gdvOrders_RowDataBound(object sender, GridViewRowEventArgs e) { if (e ...
- IOSerialize,xml和json,soap序列化器,二进制序列化器,XML序列化器,文件 检查、新增、复制、移动、删除
1 文件夹/文件 检查.新增.复制.移动.删除,2 文件读写,记录文本日志/读取配置文件3 三种序列化器4 xml和json1.文件夹/文件 检查.新增.复制.移动.删除,2 文件读写,记录文本日志/ ...
- js选中select
function selected(id, val) { $('#' + id + ' option[value="' + val + '"]').attr('selected', ...