整数的lqp拆分
题目大意
lqp在为出题而烦恼,他完全没有头绪,好烦啊…
他首先想到了整数拆分。整数拆分是个很有趣的问题。给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的。
然后lqp又想到了斐波那契数。定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),Fn就是斐波那契数的第n项。但是求出第n项斐波那契数似乎也不怎么困难…
lqp为了增加选手们比赛的欲望,于是绞尽脑汁,想出了一个有趣的整数拆分,我们暂且叫它:整数的lqp拆分。和一般的整数拆分一样,整数的lqp拆分是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。但是整数的lqp拆分要求的不是拆分总数,相对更加困难一些。对于每个拆分,lqp定义这个拆分的权值Fa1Fa2…Fam,他想知道对于所有的拆分,他们的权值之和是多少?简单来说,就是求
由于这个数会十分大,lqp稍稍简化了一下题目,只要输出对于N的整数lqp拆分的权值和mod (109+7)输出即可。
关于输入
输入的第一行包含一个整数N。
关于输出
输出一个整数,为对于N的整数lqp拆分的权值和mod (109+7)。
样例输入
3
样例输出
5
数据范围
30%: 0<N<=1000
100%: N<106
题解:
可以发现这是一个数列,递推式为:a[n]=2*a[n-1]+a[n-2]
#include<cstdio>
#include<iostream>
#define mod 1000000007
using namespace std;
typedef long long lol;
lol f[],n;
int main()
{
scanf("%lld",&n);
f[]=;
for(lol i=;i<=n;i++)f[i]=(*f[i-]+f[i-])%mod;
printf("%lld\n",f[n]);
}
整数的lqp拆分的更多相关文章
- [BZOJ2173]整数的lqp拆分
[题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...
- BZOJ 2173: 整数的lqp拆分( dp )
靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...
- BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分
整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...
- 打表\数学【bzoj2173】: 整数的lqp拆分
2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...
- BZOJ2173 整数的lqp拆分(生成函数)
首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少.(虽然不用递推式也能显然地知道答案是2n-1). 类似地,lqp拆分有递推式f(n)=Σf ...
- [国家集训队]整数的lqp拆分
我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...
- BZOJ 2173 整数的lqp拆分
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2173 题意:给出输出n.设一种拆分为n=x1+x2+x3,那么这种拆分的价值为F(x1) ...
- 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]
传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...
- Luogu4451 [国家集训队]整数的lqp拆分
题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数 ...
随机推荐
- dd备份文件系统
1.实现dd的备份: 使用gzip压缩: dd if=/dev/hdb | gzip > /local/path/image.gz 说明:/dev/hdb 是硬盘整盘.对不同的硬盘,可能是 /d ...
- cm 安装
为Cloudera Manager建立数据库:/usr/share/cmf/schema/scm_prepare_database.sh mysql -h[mysql数据库的主机名] -P63751 ...
- 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA
题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...
- Codeforces 756C Nikita and stack
Codeforces 756C Nikita and stack 题目大意: 给定一个对栈进行操作的操作序列,初始时序列上没有任何操作,每一次将一个本来没有操作的位置变为某一操作(push(x),po ...
- 洛谷P1474货币系统——背包方案计数
题目:https://www.luogu.org/problemnew/show/P1474 完全背包,注意方案计数的方法. 代码如下: #include<iostream> #inclu ...
- 几种开源SIP协议栈对比
几种开源SIP协议栈对比 随着VoIP和NGN技术的发展,H.323时代即将过渡到SIP时代,在H.323的开源协议栈中,Openh323占统治地位,它把一个复杂而又先进的H.323协议栈展现在普通程 ...
- webSocket 简单介绍
WebSocket :WebSocket协议支持(在受控环境中运行不受信任的代码的)客户端与(选择加入该代码的通信的)远程主机之间进行全双工通信. 简单的说 ...
- ceph应用情况分析
1.概述 ceph是分布式的开源存储系统,同时支持块存储.对象存储和文件系统,ceph可以满足高性能.高可靠性和高扩展等特性. 目前ceph作为开源分布式存储已经被大量使用,尤其是在云环境下的应用,下 ...
- Swiper 滑动切换图片(可用于PC端,移动端)
作为一名后端的普通程序猿, 你让我搞这种前端不是跟我玩命吗,所以用插件来搞,省事又简单,而且Swiper使用又简单是吧: 头皮发麻,不喜欢说废话,我更喜欢直接看到效果: 按Swiper官方文档来说, ...
- 原生app与WebApp的区别
Native App开发Native App开发即我们所称的传统APP开发模式(原生APP开发模式),该开发针对IOS.Android等不同的手机操作系统要采用不同的语言和框架进行开发,该模式通常是由 ...