https://www.luogu.org/problemnew/show/P1463

注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的)

根据约数个数的公式,在约数个数相同的情况下,如果各个质因子是从2开始的连续质数且指数不下降,那么一定可以得到最小的结果

玄学爆搜即可。。。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<bitset>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> pll;
const ll N=;
ll n;
ll prime[],len;
pll ans;
bool nprime[];
void dfs(ll x,ll k,ll p,ll maxn)
{
if(ans.se<k||(ans.se==k&&ans.fi>x)) ans=pll(x,k);
if(maxn==) return;
ll i,now=;
for(i=;i<=maxn;i++)
{
if(now*x>n) break;
dfs(now*x,k*(i+),p+,i);
now*=prime[p];
}
}
int main()
{
ll i,j;
scanf("%lld",&n);
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
dfs(,,,);
printf("%lld",ans.fi);
return ;
}

洛谷 P1463 [HAOI2007]反素数的更多相关文章

  1. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  2. 【洛谷P1463】反素数

    题目大意:给定 \(N < 2e9\),求不超过 N 的最大反素数. 题解: 引理1:不超过 2e9 的数的质因子分解中,最多有 10 个不同的质因子,且各个质因子的指数和不超过30. 引理2: ...

  3. 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  4. Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】

    题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...

  5. P1463 [HAOI2007]反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  6. 洛谷 1463[SDOI2005] 反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  7. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  8. 【BZOJ1053】[HAOI2007]反素数(搜索)

    [BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...

  9. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

随机推荐

  1. codeforces 509 B题 Painting Pebbles

    转载地址:http://blog.csdn.net/nike0good/article/details/43449739 B. Painting Pebbles time limit per test ...

  2. 如何刷新本地的DNS缓存?

    为了提高网站的访问速度,系统会在成功访问某网站后将该网站的域名.IP地址信息缓存到本地.下次访问该域名时直接通过IP进行访问.一些网站的域名没有变化,但IP地址发生变化,有可能因本地的DNS缓存没有刷 ...

  3. Java NIO(一) 初步理解NIO

    Java NIO(New IO)是一个可以替代标准Java IO API的IO API(从Java 1.4开始),Java NIO提供了与标准IO不同的IO工作方式. 为什么要使用 NIO? NIO ...

  4. 本机连接调试Erlang结点与rebar3编译

    今天需要实时查看目标结点上的相关信息,于是查阅了关于远程Shell使用的资料,最终采用JCL的方式与本机上的erlang结点交互.在使用erl shell时需要指定目标结点的cookie以及当前结点名 ...

  5. codeforces 665C C. Simple Strings(乱搞)

    题目链接: C. Simple Strings time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. 【C/C++】产生随机数

    #include<iostream> #include<Ctime> #include<Cstdlib> using namespace std; //产生n个st ...

  7. Asterisk 通话过程中执行动作(即applicationmap )的使用方法和电话转会议的实现

      asterisk在正常通话过程中执行拨号计划中动作是通过feature.conf中的[applicationmap ]下定义的,举例如下: nway-start => *0,callee,M ...

  8. 「LuoguP3808」 【模板】AC自动机(简单版)

    题目背景 通过套取数据而直接“打表”过题者,是作弊行为,发现即棕名. 这是一道简单的AC自动机模板题. 用于检测正确性以及算法常数. 为了防止卡OJ,在保证正确的基础上只有两组数据,请不要恶意提交. ...

  9. APACHE2 服务器配置 (一)

    1.安装 sudo apt-get install apache2 2.重启: sudo service apache2 resatrt 3.设置根目录: /var/www 设置方法: 2.2版: / ...

  10. 【旧文章搬运】NtGlobalFlags

    原文发表于百度空间,2010-08-06========================================================================== - NtG ...