如果对Hadoop- MapReduce分布式计算框架原理还不熟悉的可以先了解一下它,因为本文的wordcount程序实现就是MapReduce分而治之最经典的一个范例。

单词计数(wordcount)主要步骤:

1.读数据
2.按行处理
3.按空格切分行内单词
4.HashMap(单词,value+1)
等分给自己的数据片全部读取完之后
5.将HashMap按照首字母范围分为3个HashMap
6.将3个hashMap分别传给3个ReduceTask
 
主要流程如下图:

代码实现:

理解了原理,那么就从一个Job开始,从分Map任务和Reduce任务开始。用户编写的程序分为三个部分:Mapper,Reducer,Driver。

Mapper的输入数据和输出数据是KV对的形式(KV的类型可自定义),Mapper的业务逻辑是写在map()方法中,map()方法(maptask进程)对每一个<k,v>调用一次

Reducer的输入数据类型对应Mapper的输出数据类型,也是KV。Reducer的业务逻辑写在reduce()方法中,Reduce()方法对每一组相同的<k,v>组调用一次。

用户的Mapper和Reduce都要继承各自的父类。

整个程序需要一个Driver来进行提交,提交的是一个描述了各种必要信息的job对象。 

1.设定Map任务:

package cn.Rz_Lee.hadoop.com.mr.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; /**
* Created by Rz_Lee on 2017/8/14.
* KEYIN:默认情况下是mr框架所读到的一行文本的偏移量,Long
* 但是在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而用LongWritable
*
* VALUE:默认情况下是mr框架所读到的一行文本内容,String,同上用Text
*
*KEYOUT:是用户自定义逻辑处理写成之后输出数据中的key,在此是单词,String,同上,用Text
*VALUEOUT:是用户自定义逻辑处理写成之后输出数据中的value,在此处是单词总次数,Integer,同上,用IntWritale
*
*/
public class WordCountMapper extends Mapper<LongWritable,Text,Text,IntWritable> {
/**
* map阶段的业务逻辑就写在自定义的map()方法中
* maptask会对每一行输入数据调用一次我们自定义的map()方法
* @param key
* @param value
* @param context 输出内容
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//将maptask传给我们的文本内容先转换成String
String line = value.toString();
//根据空格将一行切分成单词
String[] words = line.split(" "); //将单词输出为<单词,1>
for(String word:words)
{
//将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发经便于相同单词会到相同的reduce task
context.write(new Text(word),new IntWritable(1));
}
}
}

2.设定Reduce任务:

package cn.Rz_Lee.hadoop.mr.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /**KEYIN,VALUEIN 对应mapper输出的KEYOUT,VALUEOUT类型对应
*
* KYEOUT,VALUEOUT 是自定义reduce逻辑处理结果的输出数据类型
* KYEOUT是单词
* VALUE是总次数
* Created by Rz_Lee on 2017/8/14.
*/
public class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
/**
*
* @param key 是一组相同单词KV对的key,如<hi,1>,<hi,1>
* @param values
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count=0;
for (IntWritable value:values)
{
count+=value.get();
}
context.write(key,new IntWritable(count));
}
}

3.wordcount程序的操作类,提交运行mr程序的yarn客户端:

package cn.Rz_Lee.hadoop.com..mr.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**相当于一个yarn集群的客户端
* 需要在此封装我们的mr程序相关运行参数,指定jar包
* 最后提交给yarn
* Created by Rz_Lee on 2017/8/14.
*/
public class WordCountDriver {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
/*conf.set("mapreduce.framework.name","yarn");
conf.set("yarn.resourcemanager.hostname","srv01");*/ /*job.setJar("/usr/hadoop/wc.jar");*/
//指定本程序的jar包所在的本地路径
job.setJarByClass(WordCountDriver.class); //指定本业务job使用的mapper/reducer业务类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); //指定mapper输出数据的KV类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //指定最终输出的数据的KV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); //指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job,new Path(args[0]));
//指定job的输出结果所在目录
FileOutputFormat.setOutputPath(job, new Path(args[1])); //将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
/*job.submit();*/
boolean res = job.waitForCompletion(true);
System.exit(res?0:1);
}
}

4.把wordcount项目导成jar包,上传到HDFS,运行 hadoop jar wordcount.jar 包.类名 /源文件路径 /输出数据文件夹

在yarn上面运行: yarn jar wordcount.jar 包.类名 /源文件路径 /输出数据文件夹

打开浏览器输入:yarn节点的IP:8088 ,在网页上可以看见整个Job的运行情况。  

Hadoop- Wordcount程序原理及代码实现的更多相关文章

  1. 4、wordcount程序原理剖析及Spark架构原理

    一.wordcount程序原理深度剖析 二.Spark架构原理 1.

  2. hadoop wordcount程序缺陷

    在wordcount 程序的main函数中,没有读取运行环境中的各种参数的值,全靠hadoop系统的默认参数跑起来,这样做是有风险的,最突出的就是OOM错误. 自己在刚刚学习hadoop编程时,就是模 ...

  3. Hadoop WordCount程序

    一.把所有Hadoop的依赖jar包导入buildpath,不用一个一个调,都导一遍就可以,因为是一个工程,所以覆盖是没有问题的 二.写wordcount程序 1.工程目录结构如下: 2.写mappe ...

  4. 大数据之路week07--day03(Hadoop深入理解,JAVA代码编写WordCount程序,以及扩展升级)

    什么是MapReduce 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃. MapReduce方法则是: 1.给在座的所有玩家中分配这摞牌 2.让每个玩家数自己手中的牌有几 ...

  5. Hadoop学习笔记(1):WordCount程序的实现与总结

    开篇语: 这几天开始学习Hadoop,花费了整整一天终于把伪分布式给搭好了,激动之情无法言表······ 搭好环境之后,按着书本的代码,实现了这个被誉为Hadoop中的HelloWorld的程序--W ...

  6. Hadoop入门程序WordCount的执行过程

    首先编写WordCount.java源文件,分别通过map和reduce方法统计文本中每个单词出现的次数,然后按照字母的顺序排列输出, Map过程首先是多个map并行提取多个句子里面的单词然后分别列出 ...

  7. Hadoop入门实践之从WordCount程序说起

    这段时间需要学习Hadoop了,以前一直听说Hadoop,但是从来没有研究过,这几天粗略看完了<Hadoop实战>这本书,对Hadoop编程有了大致的了解.接下来就是多看多写了.以Hado ...

  8. hadoop学习笔记——用python写wordcount程序

    尝试着用3台虚拟机搭建了伪分布式系统,完整的搭建步骤等熟悉了整个分布式框架之后再写,今天写一下用python写wordcount程序(MapReduce任务)的具体步骤. MapReduce任务以来H ...

  9. 020_自己编写的wordcount程序在hadoop上面运行,不使用插件hadoop-eclipse-plugin-1.2.1.jar

    1.Eclipse中无插件运行MP程序 1)在Eclipse中编写MapReduce程序 2)打包成jar包 3)使用FTP工具,上传jar到hadoop 集群环境 4)运行 2.具体步骤 说明:该程 ...

随机推荐

  1. 先行发生原则(Happens-before)

    先行发生原则(Happens-Before)是判断数据是否存在竞争.线程是否安全的主要依据. 先行发生是Java内存,模型中定义的两项操作之间的偏序关系,如果操作A先行发生于操作B,那么操作A产生的影 ...

  2. Scala 中Array,List,Tuple的差别

    尽管学了一段时间的Scala了,可是总认为基础不是太扎实,还有非常多的基础知识比較模糊.于是近期又打算又一次学习基础. Scala中的三种集合类型包含:Array,List,Tuple.那么究竟这三种 ...

  3. JQuery中$.get(),$.post(),$.ajax(),$.getJSON()的区别

    详细解读Jquery各Ajax函数:$.get(),$.post(),$.ajax(),$.getJSON() 一.$.get(url,[data],[callback]) 说明:url为请求地址,d ...

  4. apue学习笔记(第五章 标准I/O)

    本章讲述标准I/O库 流和FILE对象 对于标准I/O库,它们的操作是围绕流进行的.流的定向决定了所读.写的字符是单字节还是多字节的. #include <stdio.h> #includ ...

  5. LeetCode 206 Reverse Linked List(反转链表)(Linked List)(四步将递归改写成迭代)(*)

    翻译 反转一个单链表. 原文 Reverse a singly linked list. 分析 我在草纸上以1,2,3,4为例.将这个链表的转换过程先用描绘了出来(当然了,自己画的肯定不如博客上面精致 ...

  6. css:html() text() val()

    转http://www.jb51.net/article/35867.htm .html()用为读取和修改元素的HTML标签    对应js中的innerHTML .html()是用来读取元素的HTM ...

  7. CentOS中文乱码的问题

    修改CentOS 6.4 root用户的系统默认语言设置 最近用Virtual Box 虚拟了一个CentOS系统,版本6.4,安装时使用简体中文.发现用普通用户登录的时候 设置语言环境为Englis ...

  8. ubuntu16.04 Cmake学习二

    本节主要总结编译程序的时候使用了第三方库的情况,以调用开源opencv-2.4.9为例子,具体安装详见http://www.cnblogs.com/xsfmg/p/5900420.html. 工程文件 ...

  9. HTML5 2D平台游戏开发#1

    在Web领域通常会用到一组sprite来展示动画,这类动画从开始到结束往往不会有用户参与,即用户很少会用控制器(例如鼠标.键盘.手柄.操作杆等输入设备)进行操作.但在游戏领域,sprite动画与控制器 ...

  10. jQuery Validate(二)

    刚刚试了所谓的新版的用法.千万别问我是多新,因为我也不知道... <!DOCTYPE html> <html> <head> <script src=&quo ...