传送门

可以去看看litble巨巨关于第一类斯特林数的总结

设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i-1,j-1)+(i-1)\times f(i-1,j)\)

这个就是第一类斯特林数

第一类斯特林数中\(S_1(n,m)\)是\(\prod_{i=0}^{n-1}(x+i)\)中\(x^m\)的系数,可以用分治\(FFT\)做到\(O(n\log^2n)\)的复杂度

首先\(n\)肯定是前缀最大值,所以题目要求的\(a-1\)个数一定都在\(n\)前面,\(b-1\)个数一定都在\(n\)后面。设整个序列中没有\(n\),前缀最大值的位置分别为\(p_1,p_2,...,p_k\),可以把每个\([p_i,p_{i+1}-1]\)看成一块,那么可以产生\(a+b-2\)块,然后选择其中的\(b-1\)块整个翻转然后放到\(n\)的后面,所以答案就是$$S_1(n-1,a+b-2)\times C_{a+b-2}^{b-1}$$

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=5e5+5,P=998244353,Gi=332748118;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int A[19][N],O[N],r[N];
int n,m,a,b;
void NTT(int *A,int ty,int lim){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1){
R int I=(mid<<1),Wn=ksm(ty==1?3:Gi,(P-1)/I);O[0]=1;
fp(i,1,mid-1)O[i]=mul(O[i-1],Wn);
for(R int j=0;j<lim;j+=I)for(R int k=0;k<mid;++k){
int x=A[j+k],y=mul(O[k],A[j+k+mid]);
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
}
}if(ty==-1)for(R int i=0,inv=ksm(lim,P-2);i<lim;++i)A[i]=mul(A[i],inv);
}
void solve(int ql,int qr,int d){
if(ql==qr)return (void)(A[d][0]=ql,A[d][1]=1);
int mid=(ql+qr)>>1,lim=1,l=0;
while(lim<=qr-ql+1)lim<<=1,++l;
solve(ql,mid,d),solve(mid+1,qr,d+1);
fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
fp(i,mid-ql+2,lim-1)A[d][i]=0;
fp(i,qr-mid+1,lim-1)A[d+1][i]=0;
NTT(A[d],1,lim),NTT(A[d+1],1,lim);
fp(i,0,lim-1)A[d][i]=mul(A[d][i],A[d+1][i]);
NTT(A[d],-1,lim);
}
int C(int n,int m){
int k1=1,k2=1;
fp(i,n-m+1,n)k1=mul(k1,i);
fp(i,1,m)k2=mul(k2,i);
return mul(k1,ksm(k2,P-2));
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),a=read(),b=read();
if(!a||!b||a+b-2>n-1)return puts("0"),0;
if(n==1)return puts("1"),0;
solve(0,n-2,0);
printf("%d\n",mul(A[0][a+b-2],C(a+b-2,b-1)));
return 0;
}

CF960G Bandit Blues(第一类斯特林数)的更多相关文章

  1. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  2. [CF960G]Bandit Blues(第一类斯特林数+分治卷积)

    Solution: ​ 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数. 假设新加一个数 \(i+1\) 那么会有: \[ f ...

  3. CF960G Bandit Blues 第一类斯特林数+分治+FFT

    题目传送门 https://codeforces.com/contest/960/problem/G 题解 首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大 ...

  4. Codeforces960G Bandit Blues 【斯特林数】【FFT】

    题目大意: 求满足比之前的任何数小的有A个,比之后的任何数小的有B个的长度为n的排列个数. 题目分析: 首先写出递推式,设s(n,k)表示长度为n的排列,比之前的数小的数有k个. 我们假设新加入的数为 ...

  5. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

  6. CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】

    题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...

  7. CF960G Bandit Blues 分治+NTT(第一类斯特林数)

    $ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...

  8. 【cf960G】G. Bandit Blues(第一类斯特林数)

    传送门 题意: 现在有一个人分别从\(1,n\)两点出发,包中有一个物品价值一开始为\(0\),每遇到一个价值比包中物品高的就交换两个物品. 现在已知这个人从左边出发交换了\(a\)次,从右边出发交换 ...

  9. CF960G(第一类斯特林数)

    题目 CF960G 做法 设\(f(i,j)\)为\(i\)个数的序列,有\(j\)个前缀最大值的方案数 我们考虑每次添一个最小数,则有:\(f(i,j)=f(i-1,j)+(i-1)*f(i-1,j ...

随机推荐

  1. 2-3-4树的java实现

    一.什么是2-3-4树 2-3-4树和红黑树一样,也是平衡树.只不过不是二叉树,它的子节点数目可以达到4个. 每个节点存储的数据项可以达到3个.名字中的2,3,4是指节点可能包含的子节点数目.具体而言 ...

  2. Detours3.0 文档翻译

    http://blog.csdn.net/buck84/article/details/8289991 拦截二进制函数 Detours库能够在执行过程中动态拦截函数调用.detours将目标函数前几个 ...

  3. Sql Server 2016 创建内存数据库

    官方教程:https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/survey-of-initial-area ...

  4. jmeter之java请求

    通常情况下,推荐使用jmeter之java请求编写一beashell调用java代码(上篇)(推荐)编写Java 请求 有以下优势 脚本易维护 易调试 开发脚本周期短 不过网上扩展java请求文章比较 ...

  5. Android Weekly Notes Issue #241

    Android Weekly Issue #241 January 22nd, 2017 Android Weekly Issue #241 本期内容包括: 经典导航模式Master/Detail的设 ...

  6. HTML中级教程 自定义列表

    在HTML初级教程中我们教授了无序列表和有序列表,很不幸,很像Peter Cushing的博士Who,自定义列表很容易被忽略.可能是因为自定义列表需要比无序列表和有序列表更多的设置和似乎更少用.当遭遇 ...

  7. input表单元素的默认padding不一致问题

    最近做的项目,发现一堆问题,input type=“text”和type=“button” (1)在无文字的时候高度是一致的,分别写入相同大小的文字type=“button”高度>type=“t ...

  8. Codeforces696 Round #362 (Div. 1)(vp) A~D题解

    很久没有打比赛了,内部模拟赛天天垫底,第一次vp之旅又是和**一样,这样下去GDOI之后直接退役算了 整场都在忘开LL A. Lorenzo Von Matterhorn 这个题一看我就想直接虚树+树 ...

  9. 分布式锁(Redis实现)

    1.分布式锁解决方案  1.采用数据库 不建议 性能不好 jdbc  2.基于Redis实现分布式锁(setnx)setnx也可以存入key,如果存入key成功返回1,如果存入的key已经存在了,返回 ...

  10. mac安装python3

    http://www.jianshu.com/p/51811fa24752 brew install python3 安装路径:/usr/local/Cellar 使用: 执行python3即可 配置 ...