Tensor

Tensor是PyTorch中的重要数据结构,可认为是一个高维数组,Tensor与numpy的ndarrays类似,但Tensor可以使用GPU加速

import torch as t#import A as B,给予A库一个B的别称,帮助记忆

#构建5*3矩阵,只是分配了空间,未初始化
x=t.Tensor(5,3)
print(x)
print(x.size())#查看x的形状
print(x.size()[0],x.size(1))#查看列的个数,两种写法等价
print(t.Size([4,5])) #使用[0,1]均匀分布随机初始化二维数组
y=t.rand(5,3)
print(y) #加法的三种写法
print(x+y)
print(t.add(x,y))
#指定加法结果的输出目标未result
result=t.Tensor(5,3)#预先分配空间
t.add(x,y,out=result)#输入到result
print(result)

函数名后面带下划线_的函数会修改Tensor本身。例如,x.add_(y)和x.t_()会改变x,但x.add(y)和x.t()会返回一个新的Tensor,且x不变

Tenor与numpt极为相似,Tensor和numpy的数组见的互操作非常容易且快速,Tensor不支持的操作可先转为numpy数组处理,之后再转回Tensor。

a=t.ones(5)
print(a) b=a.numpy()
print(b) c=np.ones(5)
d=t.from_numpy(c)#Numpy->Tensor
print(c)
print(d)
#Tensor和Numpy共享内存,其中一个改变另一个也会随之改变
d.add_(1)
print(c)
print(d)

Tensor可通过.cuda方法转为GPU的Tensor,从而享受GPU的加速

x=t.rand(3,5)
y=t.ones(3,5) print(t.cuda.is_available()) if t.cuda.is_available():
x=x.cuda()
y=y.cuda()
z=x+y
print(z)

 Autograd:自动微分

深度学习的算法本质是通过反向传播求导数,Autograd模块实现了此功能,在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数。

autograd.Variable是Autograd的核心类,它封装了Tensor,并支持几乎所有Tensor的操作。Tensor在被封装为Variable之后,可以调用它的.backward实现反向传播,计算所有梯度。

Variable主要包含三个属性。

data:保存Variable所包含的Tensor。

grad:保存data对应的梯度,grad也是个Variable,而不是Tensor,它和data的形状一样。

grad_fn:指向一个Function对象,这个Function用来反向传播计算输入的梯度。

注意:grad在反向传播过程中是累加的,意味着每次运行反向传播,梯度都回累加之前的梯度,所以反向传播前需把梯度清零。

from torch.autograd import Variable

#使用Tensor新建一个Variable

x=Variable(t.ones(2,2),requires_grad=True)
print(x) y=x.sum()
print(y)
print(y.grad_fn) y.backward()#反向传播,计算梯度
print(x.grad) y.backward()
print(x.grad) #梯度清零
x.grad.data.zero_()
print(x.grad)

Variable和Tensor有几乎一致的接口,在实际使用中可以无缝切换

x=Variable(t.ones(4,5))

y=t.cos(x)#返回元素的余弦

print(y)

x_tensor_cos=t.cos(x.data)

print(x_tensor_cos)

pytorch构建神经网络

torch.nn是专门为神经网络设计的模块化接口。nn构建于Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,包含网络各层定义及forward方法,调用forward(input)方法,可返回前向传播的结果。

1.定义网络:

  定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数__init__()中。如果某一层不具有可学习参数,则既可以放在构造函数中,也可不放。

import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module):
def __init__(self):
# nn.Module子类的函数必须在构造函数中执行父类的构造函数
# 下式等价于nn.Module.__init__(self)
super().__init__()
# 卷积层'1'表示输入图片为单通道,'6'表示输出通道数
# '5'表示卷积核为5*5
     #卷积核为2维
self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5)
# 仿射层/全连接层,y=Wx+b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
#卷积->激活->池化
x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
x=F.max_pool2d(F.relu(self.conv1(x)),2)
#reshpe,'-1'表示自适应
x=x.view(x.size()[0],-1)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=self.fc3
return x net=Net()
print(net)

只要在nn.module的子类中定义了forward函数,backward函数就会被自动实现(利用Autograd)。在forward函数中可使用任何Variable支持的函数,还可以使用if、for循环、print、log等Python语法

网络的可学习参数通过net.parameters()返回,net.named_parameters可同时返回可学习的参数及名称。

1.

Pytorch_01 Tensor,Autograd,构建网络的更多相关文章

  1. Docker 构建网络服务后本机不能访问

    Docker 构建网络服务后本机不能访问 起因 使用tornado构建了一个服务,测试都没有问题 使用docker构建镜像,使用docker run image_name启动服务 使用浏览器访问 12 ...

  2. L0 torch 构建网络初步

    L0 pytorch 构建简单网络 本文是L0, 目的是把pytorch构建感知器的程序,仔细剖析理解. import torch from torch import nn torch.__versi ...

  3. 利用sfc文件构建网络渗透

      收集哈希 SCF(Shell命令文件)文件可用于执行一组有限的操作,例如显示Windows桌面或打开Windows资源管理器,这并不是什么新鲜事.然而,一个SCF文件可以用来访问一个特定的UNC路 ...

  4. keras 学习笔记:从头开始构建网络处理 mnist

    全文参考 < 基于 python 的深度学习实战> import numpy as np from keras.datasets import mnist from keras.model ...

  5. WGCNA构建基因共表达网络详细教程

    这篇文章更多的是对于混乱的中文资源的梳理,并补充了一些没有提到的重要参数,希望大家不会踩坑. 1. 简介 1.1 背景 WGCNA(weighted gene co-expression networ ...

  6. 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10

    简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...

  7. PyTorch全连接ReLU网络

    PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网 ...

  8. 第二十一节,使用TensorFlow实现LSTM和GRU网络

    本节主要介绍在TensorFlow中实现LSTM以及GRU网络. 一 LSTM网络 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息 ...

  9. pytorch构建自己设计的层

    下面是如何自己构建一个层,分为包含自动反向求导和手动反向求导两种方式,后面会分别构建网络,对比一下结果对不对. -------------------------------------------- ...

随机推荐

  1. LeetCode - Min Remaining Chess Pieces

    假设有一个棋盘(二维坐标系), 棋盘上摆放了一些石子(每个石子的坐标都为整数). 你可以remove一个石子, 当且仅当这个石子的同行或者同列还有其它石子. 输入是一个list of points. ...

  2. idea 启动项目提示 Command line is too long. Shorten command line for Application or also for Spring Boot default configuration.

    在.idea 文件夹中打开workspace.xml文件找到<component name="PropertiesComponent">,在标签里加一行  <pr ...

  3. day059-60 ajax初识 登录认证练习 form装饰器, form和ajax上传文件 contentType

    一.ajax 的特点 1.异步交互:客户端发出一个请求后,需要等待服务器响应结束后, 才能发出第二个请求 2.局部刷新:给用户的感受是在不知不觉中完成请求和响应过程. 二.ajax 模板示例 ($.a ...

  4. 1.2.8 Excel做个滚动抽奖

    1.首先要准备好数据库: 2.用RAND函数来生成随机数字,做一个辅助列: 3.制作抽奖界面: 4.输入公式: 在F3中输入下列公式并填充至F5: =INDEX(A:A,MATCH(SMALL(B:B ...

  5. Centos 7 64位 minimal 最小化安装的系统中静默安装oracle 11g r2

    1:安装好centos 7 操作系统: 虚拟机安装centos 7,在vmware中一步步来就可以成功. 2:安装vim 最小化安装的系统只有vi编辑器,这里装一下vim,个人习惯,可以不安装, 那么 ...

  6. HTML5 Audio(音频)

        <audio controls> <source src="horse.ogg" type="audio/ogg"> <s ...

  7. 必做课下作业MyCP

    20175227张雪莹 2018-2019-2 <Java程序设计> 必做课下作业MyCP 要求 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支 ...

  8. python 中增加css样式的三种方式

    增加css样式的三种方式: <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  9. 一、新建springBoot项目

    三种方式新建SpringBoot项目:  官网,  myeclipse,  idea 1.官方网站新建(https://start.spring.io/) 1)打开官网,选择自己需要的springBo ...

  10. 使用iptables基于MAC地址进行访控

    近日完成一台基于CentOS的SVN服务器配置,由于该服务器上的文件非常重要,仅部分用户需要访问,最后决定采用iptables来做访控,并且是根据MAC地址来限制,为了便于后期维护,防火墙的配置是通过 ...