洛谷CF809C Find a car(数位DP)
通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\)。
二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_{j=0}^y[i\text{ xor }j\le k]\)就好了。
比较套路的数位DP。
从高位往低位做,设\(f[t][0/1][0/1][0/1]\)表示到第\(t\)位,\(i,j,i\text{ xor }j\)已确定的值是否卡到\(x,y,k\)前\(t\)位的上界的方案数和权值和。
每一位的转移都是一个小讨论:如果之前卡到上界,这一位可以接着卡,或者如果这一位的上界是\(1\),就可以填\(0\)转移到不卡上界。如果之前不卡了,那么这一位随便选。
注意到最开始的式子里有一个\(+1\),所以要输出\(\sum\)权值和+方案数。
下面的代码使用了压位和define可能会比较丑
#include<bits/stdc++.h>
#define R register int
using namespace std;
const int YL=1e9+7;
int t,fc[8],fs[8],gc[8],gs[8];
inline int in(){R x;scanf("%d",&x);return x;}
inline void M(R&x){if(x>=YL)x-=YL;}
#define T(x,u,v) if(i>1||w==x)Trans(i>>1,li,u,v,i>1?w^x:w)
void Trans(R i,R li,R u,R v,R w){//暴搜转移
if(!i){
if(w)gs[v]=(gs[v]+fc[u]*(long long)t)%YL;
return M(gc[v]+=fc[u]),M(gs[v]+=fs[u]);
}
if(i&li){T(0,u,v|i);T(1,u,v);}//讨论开始
else T(0,u,v);
T(0,u|i,v|i);
T(1,u|i,v|i);
}
int Dp(R n,R m,R k){
if(n<0||m<0)return 0;
memset(fc,0,32);fc[0]=1;
memset(fs,0,32);
for(t=1<<30;t;t>>=1){
Trans(4,!!(n&t)*4|!!(m&t)*2|!!(k&t),0,0,0);
memcpy(fc,gc,32),memset(gc,0,32);
memcpy(fs,gs,32),memset(gs,0,32);
}
R s=0;
for(R i=0;i<8;++i)M(s+=fs[i]),M(s+=fc[i]);
return s;
}
int main(){
for(R q=in();q--;){
R x1=in()-2,y1=in()-2,x2=in()-1,y2=in()-1,k=in()-1;
cout<<((Dp(x2,y2,k)-Dp(x1,y2,k)-Dp(x2,y1,k)+Dp(x1,y1,k))%YL+YL)%YL<<endl;
}
return 0;
}
洛谷CF809C Find a car(数位DP)的更多相关文章
- 洛谷P2657 windy数 [SCOI2009] 数位dp
正解:数位dp 解题报告: 传送门! 这题一看就是个数位dp鸭,"不含前导零且相邻两个数字之差至少为2"这种的 然后就直接套板子鸭(板子戳总结,懒得放链接辣QAQ 然后就是套路 然 ...
- 洛谷P2602 数字计数 [ZJOI2010] 数位dp
正解:数位dp 解题报告: 传送门! 打算在寒假把学长发过题解的题目都做辣然后把不会的知识点都落实辣! ⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 然后这道题,开始想到的时候其实想到的是大模拟,就有点像之前考试贪 ...
- 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]
题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...
- 洛谷$P$2518 计数 $[HAOI2010]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 感觉省选的数位$dp$还是比较有质量的辣,,,至少有一定的思维难度是趴$QwQ$ 这题要考虑到一个,我认为比较关键的点,就,对于一个位数不满的数,可以理解 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
随机推荐
- C. Anton and Fairy Tale
链接 [https://codeforces.com/contest/785/problem/C] 题意 初始时有n,第1天先加m开始吃1,但总的不能超过n,第i天先加m开始吃i(如果不够或刚好就吃完 ...
- 软件扒网站? 爬虫? F12查看源码? 查看网页源代码?浏览器sources? 区别和联系!
1.软件扒网站: 利用各类扒站网站,如仿站小工具8.0,可以按照规则将网站的未经浏览器简析的前端代码扒下来,并整理成css,js,html等文件夹,很方便.(当然看不到ajax等相关代码) 备注:如果 ...
- git在vs2017中的使用
对于习惯了右键提交源代码的道友来说,敲命令行真的蓝瘦香菇.所幸17里集成了Git插件,用起来还是挺方便的. 1.本地安装git,工具还是要有的,主要用于配置环境,ssh配置一下.就不用每次都去连接了. ...
- html中怎么设置性别默认选择
<html><body> <form action="/example/html/form_action.asp" method="get& ...
- 一些iptables配置
第一条是封堵22,80,8080端口的输出,第二条是为该ip的80端口设置输出白名单,亲测有效:第三条是禁止所有UDP报文的输出 iptables -I OUTPUT -p tcp -m multip ...
- hadoop实例-网站用户行为分析
一.数据集 网站用户购物行为数据集2030万条,包括raw_user.csv(2000万条)和small_user.csv(30万条,适合新手) 字段说明: user_id 用户编号,item_id ...
- Eclipse支持文件UTF-8编码
Eclipse修改编码格式_百度经验https://jingyan.baidu.com/article/2009576193ee38cb0721b416.html 这篇最棒 如何为eclipse中的文 ...
- nodejs配置nginx 以后链接mongodb数据库
服务器 :windows server2008 R2 反向代理 :nginx 1.15.1 for window 64位 数据库:mongodb 4 64位 使用框架express 首先下载nodej ...
- [转帖]windows+xshell+xming访问非桌面版Linux服务器
windows+xshell+xming访问非桌面版Linux服务器 2016年06月05日 00:09:11 jxxiaohou 阅读数:11996 标签: Linux 更多 个人分类: Linux ...
- Kettle中表输出字段和字段选择
表输出: 字段选择: 注:字段选择可以输出匹配后的选中列,表输出则输出匹配后的所有列.