洛谷CF809C Find a car(数位DP)
通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\)。
二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_{j=0}^y[i\text{ xor }j\le k]\)就好了。
比较套路的数位DP。
从高位往低位做,设\(f[t][0/1][0/1][0/1]\)表示到第\(t\)位,\(i,j,i\text{ xor }j\)已确定的值是否卡到\(x,y,k\)前\(t\)位的上界的方案数和权值和。
每一位的转移都是一个小讨论:如果之前卡到上界,这一位可以接着卡,或者如果这一位的上界是\(1\),就可以填\(0\)转移到不卡上界。如果之前不卡了,那么这一位随便选。
注意到最开始的式子里有一个\(+1\),所以要输出\(\sum\)权值和+方案数。
下面的代码使用了压位和define可能会比较丑
#include<bits/stdc++.h>
#define R register int
using namespace std;
const int YL=1e9+7;
int t,fc[8],fs[8],gc[8],gs[8];
inline int in(){R x;scanf("%d",&x);return x;}
inline void M(R&x){if(x>=YL)x-=YL;}
#define T(x,u,v) if(i>1||w==x)Trans(i>>1,li,u,v,i>1?w^x:w)
void Trans(R i,R li,R u,R v,R w){//暴搜转移
if(!i){
if(w)gs[v]=(gs[v]+fc[u]*(long long)t)%YL;
return M(gc[v]+=fc[u]),M(gs[v]+=fs[u]);
}
if(i&li){T(0,u,v|i);T(1,u,v);}//讨论开始
else T(0,u,v);
T(0,u|i,v|i);
T(1,u|i,v|i);
}
int Dp(R n,R m,R k){
if(n<0||m<0)return 0;
memset(fc,0,32);fc[0]=1;
memset(fs,0,32);
for(t=1<<30;t;t>>=1){
Trans(4,!!(n&t)*4|!!(m&t)*2|!!(k&t),0,0,0);
memcpy(fc,gc,32),memset(gc,0,32);
memcpy(fs,gs,32),memset(gs,0,32);
}
R s=0;
for(R i=0;i<8;++i)M(s+=fs[i]),M(s+=fc[i]);
return s;
}
int main(){
for(R q=in();q--;){
R x1=in()-2,y1=in()-2,x2=in()-1,y2=in()-1,k=in()-1;
cout<<((Dp(x2,y2,k)-Dp(x1,y2,k)-Dp(x2,y1,k)+Dp(x1,y1,k))%YL+YL)%YL<<endl;
}
return 0;
}
洛谷CF809C Find a car(数位DP)的更多相关文章
- 洛谷P2657 windy数 [SCOI2009] 数位dp
正解:数位dp 解题报告: 传送门! 这题一看就是个数位dp鸭,"不含前导零且相邻两个数字之差至少为2"这种的 然后就直接套板子鸭(板子戳总结,懒得放链接辣QAQ 然后就是套路 然 ...
- 洛谷P2602 数字计数 [ZJOI2010] 数位dp
正解:数位dp 解题报告: 传送门! 打算在寒假把学长发过题解的题目都做辣然后把不会的知识点都落实辣! ⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 然后这道题,开始想到的时候其实想到的是大模拟,就有点像之前考试贪 ...
- 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]
题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...
- 洛谷$P$2518 计数 $[HAOI2010]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 感觉省选的数位$dp$还是比较有质量的辣,,,至少有一定的思维难度是趴$QwQ$ 这题要考虑到一个,我认为比较关键的点,就,对于一个位数不满的数,可以理解 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
随机推荐
- A-Text Reverse(文本反向读)
多组数据测试,输入t,表示要测几个,每个语句反向输出. 链接 [https://cn.vjudge.net/contest/235390#problem/A] 解: 就是getchar()和gets( ...
- Effective java 43返回零长度的数组或者集合而不是null
- vue echarts 动态数据
安装echarts依赖 npm install echarts -S 或者使用国内的淘宝镜像: 安装 npm install -g cnpm --registry=https://registry.n ...
- nginx强制使用https访问(http跳转到https)
Nginx 的 Location 从零开始配置 - 市民 - SegmentFault 思否https://segmentfault.com/a/1190000009651161 nginx配置loc ...
- PHP中对象的深拷贝与浅拷贝
先说一下深拷贝和浅拷贝通俗理解 深拷贝:赋值时值完全复制,完全的copy,对其中一个作出改变,不会影响另一个 浅拷贝:赋值时,引用赋值,相当于取了一个别名.对其中一个修改,会影响另一个 PHP中, = ...
- APP-SERVICE-SDK:setStorageSync:fail;at page/near/pages/shops/shops page lifeCycleMethod onUnload function
APP-SERVICE-SDK:setStorageSync:fail;at page/near/pages/shops/shops page lifeCycleMethod onUnload fun ...
- Socket和ObjectOutputStream问题
用到Socket序列化对象网络传输时ObjectOutputStream一直刷新连接 用户代码 package com.jachs.ladflower.ladflower; import java.n ...
- Quartz框架学习(1)—核心层次结构
Quartz框架学习 Quartz(任务调度)框架的核心组件: job:任务.即任务调度行为中所要调度的对象. trigger:触发器.是什么促使了一个任务的调度?当然是时间.这也算事件驱动类型程序. ...
- Java——scoket通讯
Socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket是TCP/IP协议通信的抽象层,所以我们还需要了解TCP协议 传输层协议 TCP: ...
- Hbase的作用
实时动态增加列 多版本的意思为多个用户地址,多个用户信息,多个用户号码