(2016天津压轴题)设函数$f(x)=(x-1)^3-ax-b,x\in R$, 其中$a,b\in R$
(1)求$f(x)$的单调区间.
(2)若$f(x)$存在极值点$x_0$,且$f(x_1)=f(x_0),$其中$x_1\ne x_0$,求证:$x_1+2x_0=3$;
(3)设$a>0$,函数$g(x)=|f(x)|,$求证:$g(x)$在区间$[0,2]$上的最大值不小于$\dfrac{1}{4}$


分析:
(1)
当$a\le0,f(x)$在$(-\infty,+\infty)$单调递增.
当$a>0,f(x)$在$\left(-\infty,-\dfrac{\sqrt{3a}}{3}+1\right)\nearrow,\left(-\dfrac{\sqrt{3a}}{3}+1,\dfrac{\sqrt{3a}{3}}+1\right)\searrow,\left(\dfrac{\sqrt{3a}}{3}+1,+\infty\right)\nearrow$
(2)由于$x_0,$是$f(x)$的极值点,故由(1)知$a>0$,且$a=3(x_0-1)^2$,由题意$f(x)=f(x_0)$有且仅有两根$x_0,x_1$,容易验证$f(3-2x_0)-f(x_0)=0$

故$3-2x_0=x_0(\textbf{舍去,此时}a=0) $或$3-2x_0=x_1$即$2x_0+x_1=3$

(3)记$M(a,b)=\max\limits_{a>0,b\in R}|f(x)|$则
$$\begin{cases}
M(a,b)&\ge|f(0)|=|-1-b|\\
M(a,b)&\ge|f(\dfrac{1}{2})|=|-\dfrac{1}{8}-\dfrac{1}{2}a-b|\\
M(a,b)&\ge|f(\dfrac{3}{2})|=|\dfrac{1}{8}-\dfrac{3}{2}a-b|\\
M(a,b)&\ge|f(2)|=|1-2a-b|\\
\end{cases}$$
则\begin{align*}
6M(a,b)&\ge|f(0)|+2|f(\dfrac{1}{2})|+2|f(\dfrac{3}{2})|+|f(2)|\\
&=|-1-b|+2|-\dfrac{1}{8}-\dfrac{1}{2}a-b|+2|\dfrac{1}{8}-\dfrac{3}{2}a-b|+|1-2a-b|\\
&=|-1-b-2(-\dfrac{1}{8}-\dfrac{1}{2}a-b)+2(\dfrac{1}{8}-\dfrac{3}{2}a-b)-(1-2a-b)|\\
&=\dfrac{3}{2}
\end{align*}
故$M(a,b)\ge \dfrac{1}{4}$,当$f(x)=(x-1)^3-\dfrac{3}{4}(x-1)$时取到等号.

注:通过画图,两条直线“夹紧”曲线,得到0,1/2,3/2或者1/2,3/2,2都可以。

$3M\ge |f(0)|+\dfrac{3}{2}|f(\dfrac{1}{2})|+\dfrac{1}{2}|f(\dfrac{3}{2})|$

或者$3M\ge \dfrac{1}{2}|f(\dfrac{1}{2})|+\dfrac{3}{2}|f(\dfrac{3}{2})|+|f(2)|$

两者并起来写就是$6M(a,b)\ge | f(0)|+2|f(\dfrac{1}{2})|+2|f(\dfrac{3}{2})|+|f(2)|$

MT【259】2016天津压轴题之最佳逼近的更多相关文章

  1. MT【256】2016四川高考解答压轴题

    (2016四川高考数学解答压轴题)设函数$f(x)=ax^2-a-\ln x,a\in R$. 1)讨论$f(x)$的单调性;2)确定$a$的所有可能值,使得$f(x)>\dfrac{1}{x} ...

  2. MT【119】关于恒成立的一道压轴题

    分析:处理恒成立问题,一般先代特殊值缩小范围.令x=0,则f(a)<f(0),容易知a<0. 排除答案C.容易理解a趋向于0时候,是可以的,排除D.在剩余的A,B选项里,显然偏向于A.因为 ...

  3. MT【273】2014新课标压轴题之$\ln2$的估计

    已知函数$f(x)=e^x-e^{-x}-2x$(1)讨论$f(x)$的单调性;(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;(3)已 ...

  4. MT【75】考察高斯函数的一道高考压轴题

    解答:答案1,3,4. 这里关于高斯函数$[x]$的一个不等式是需要知道的$x-1<[x]\le x$,具体的:

  5. 清北 Noip 2016 考前刷题冲刺济南班

    2016 10 29 周六 第一天 %%%,%ZHX大神 上午,60分, 下午,爆零orz 2016 10 30 周天 第二天 炒鸡倒霉的一天 %%%,%ZHX大神 据大神第一天的题最简单. 上午,和 ...

  6. 网络流板子/费用流板子 2018南京I题+2016青岛G题

    2018南京I题: dinic,链式前向星,数组队列,当前弧优化,不memset全部数组,抛弃满流点,bfs只找一条增广路,每次多路增广 #include <bits/stdc++.h> ...

  7. 腾讯2016校招编程题【PHP实现】

    2016腾讯春招的编程题 话不多说,直接上题!!! 给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串.如何删除才能使得回文串最长呢?输出需要删除的字符个数 . 这道题是以回文为载体, ...

  8. 【CTF WEB】ISCC 2016 web 2题记录

      偶然看到的比赛,我等渣渣跟风做两题,剩下的题目工作太忙没有时间继续做. 第1题 sql注入: 题目知识 考察sql注入知识,题目地址:http://101.200.145.44/web1//ind ...

  9. 百练6255-单词反转-2016正式B题

    百练 / 2016计算机学科夏令营上机考试 已经结束 题目 排名 状态 统计 提问   B:单词翻转 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 输入一个 ...

随机推荐

  1. UVA - 12169 -扩展欧几里得算法

    #include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> ...

  2. codeforces#766 D. Mahmoud and a Dictionary (并查集)

    题意:给出n个单词,m条关系,q个询问,每个对应关系有,a和b是同义词,a和b是反义词,如果对应关系无法成立就输出no,并且忽视这个关系,如果可以成立则加入这个约束,并且输出yes.每次询问两个单词的 ...

  3. Survey项目总结

    1.Ioc深入理解 Inverse of control org.springframework.scheduling.quartz.SchedulerFactoryBean org.mybatis. ...

  4. ps昏暗室内照片调成暖色光亮效果

    最终效果 一.打开素材图片,把背景图层复制一层,做HDR滤镜操作,如果你没有这款滤镜,可以去网上下载,参数及效果如下图. 二.复制一层,用Noise滤镜做降噪处理,参数及效果如下图. 三.新建一个图层 ...

  5. python模块详解

    什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写的代码(.p ...

  6. 配置nginx反向代理服务器,解决浏览器跨域调用接口的限制问题

    配置nginx反向代理服务器,解决浏览器跨域调用接口的限制问题 - 大venn的博客 - CSDN博客https://blog.csdn.net/u011135260/article/details/ ...

  7. SQL性能优化-order by语句的优化

    原文:http://bbs.landingbj.com/t-0-243203-1.html 在某些情况中,MySQL可以使用一个索引来满足ORDER BY子句,而不需要额外的排序.where条件和or ...

  8. 120. 单词接龙 (BFS)

    描述 给出两个单词(start和end)和一个字典,找到从start到end的最短转换序列 比如: 每次只能改变一个字母. 变换过程中的中间单词必须在字典中出现. 如果没有转换序列则返回0. 所有单词 ...

  9. flutter图片铺满父框

    正常我们需要显示一张图片,会用到Image这个控件. 打个比方,我们加载一张本地的图片, 先看一下这个Image.asset的源码: Image.asset(String name, { Key ke ...

  10. MySQL索引管理及执行计划

    一.索引介绍 二.explain详解 三.建立索引的原则(规范)