【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)
【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)
题面
题解
似乎是\(\mbox{Anson}\)爷的题。
\(d=1\)的时候,随便怎么都行,答案就是\(k^n\)。
\(d=2\)的时候,可以做一个\(dp\),设\(f[i][j]\)表示前\(i\)个复读机选了\(j\)个时间的方案数。
然后枚举当前这个复读机复读的次数,得到:
\]
化简啥的之后得到
\]
那么对于\((n-j)!f_j\)构建生成函数,那么等价于每加入一个数就乘上了一个\(A(x)=\sum_{i=0}^{\infty}[2|i]\frac{1}{i!}x^i\)
化简之后就是\(A(x)=\frac{e^x+e^{-x}}{2}\)。
所以最终的答案就是\(A(x)^k[n]\),即\((\frac{e^x+e^{-x}}{2})^k[x^n]\)。
把那个除二搞出来,拿二项式定理算算得到\(\displaystyle \sum_{i=0}^k{k\choose i}e^{(2i-k)x}\) 。
所以\(n\)次项系数就是\((2i-k)^n\)。
最后就是对于\(d=3\)的情况,
推出来的式子就是
\]
实际上没必要拿\(dp\)方程来推,可以直接用生成函数考虑。如果确定了每个复读机复读的次数,那么总方案实际上就是\(n!\)除上每个复读机复读次数的阶乘。这个可重排列可以直接推出这个生成函数。
然后发现不会算,前面那个\([3|i]\)不会搞,这样子就可以丢一脸的单位根反演出来:
\]
然后原式就变成了
\]
也就是
\]
要求的是这个东西的\(k\)次方,也就是
\]
而\(d=3\)的时候\(k\)很小,直接\(O(k^2)\)暴力二项式定理给他展开就好了。
至于单位根怎么求?
求出模数\(p\)的原根\(g\),我们知道\(g^{p-1}\equiv 1(mod\ p)\),而\(\omega_d^d\equiv 1(mod\ p)\)。所以有\(\omega_d=g^{\frac{p-1}{d}}\)。
那么算出来之后就可以\(O(k^2\log n)\)计算答案了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 19491001
#define MAX 500500
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int n,k,d,ans;
int jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){if(n<m||n<0)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
scanf("%d%d%d",&n,&k,&d);
if(d==1){printf("%d\n",fpow(k,n));return 0;}
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<=k;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=k;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=k;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
if(d==2)
{
for(int i=0;i<=k;++i)ans=(ans+1ll*C(k,i)*fpow((i+i-k+MOD)%MOD,n))%MOD;
ans=1ll*ans*fpow(fpow(2,k),MOD-2)%MOD;
printf("%d\n",ans);
}
else
{
int w1=fpow(7,(MOD-1)/3),w2=1ll*w1*w1%MOD;
for(int i=0;i<=k;++i)
for(int j=0;i+j<=k;++j)
{
int p=(1ll*(k-j-i)+1ll*w1*i+1ll*w2*j)%MOD;
ans=(ans+1ll*C(k,i)*C(k-i,j)%MOD*fpow(p,n))%MOD;
}
ans=1ll*ans*fpow(fpow(d,k),MOD-2)%MOD;
printf("%d\n",ans);
}
return 0;
}
【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)的更多相关文章
- uoj #450[集训队作业2018]复读机
传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...
- 【UOJ#450】[集训队作业2018] 复读机
题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...
- uoj#450. 【集训队作业2018】复读机(单位根反演)
题面 传送门 题解 我的生成函数和单位根反演的芝士都一塌糊涂啊-- \(d=1\),答案就是\(k^n\)(因为这里\(k\)个复读机互不相同,就是说有标号) \(d=2\),我们考虑复读机的生成函数 ...
- [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]
题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...
- UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp
LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...
- uoj450 【集训队作业2018】复读机(生成函数,单位根反演)
uoj450 [集训队作业2018]复读机(生成函数,单位根反演) uoj 题解时间 首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] ...
- UOJ #449. 【集训队作业2018】喂鸽子
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- UOJ#418. 【集训队作业2018】三角形
#418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...
随机推荐
- django 路由系统,数据库操作
一.修改配置 数据库 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME':'dbname', 'USER': ...
- IDEA通过Git同步代码到Coding
准备工作: (1)在本地创建好项目 (2)在coding创建好项目,并设置公开 1.创建Git仓库 2.选择对应的本地项目文件夹 以上两步相当于在项目文件夹中git bash here 并 ...
- 查看mysql数据库连接数、并发数相关信息
查看mysql数据库连接数.并发数相关信息. - caodongfang126的博客 - CSDN博客 https://blog.csdn.net/caodongfang126/article/det ...
- 逻辑斯特回归tensorflow实现
calss #!/usr/bin/python2.7 #coding:utf-8 from __future__ import print_function import tensorflow as ...
- Java-Spring-获取Request,Response对象
转载自:https://www.cnblogs.com/bjlhx/p/6639542.html 第一种.参数 @RequestMapping("/test") @Response ...
- Mysql如何快速插入100万条记录?
1.java程序拼接insert带多个value,使一次提交多个值. 2.插入数据之前先删除索引(注意主键不能删除),然后插入数据,最后重建索引 3.可以设置手动commit,用来提高效率 4.使用批 ...
- 一、PHP_OSS使用
一.OSS PHP SDK下载 二.文件目录 三.参考手册快速入门对oss操作 以及到控制台找到相应参数并填写
- 表单中input name属性有无[]的区别
1 input数组 如下一个表单: <input type="text" name="username[]" value="Jason" ...
- MySQL函数GROUP_CONCAT
该函数返回带有来自一个组的连接的非NULL值的字符串结果.该函数是一个增强的Sybase SQL Anywhere支持的基本LIST()函数. 语法结构: GROUP_CONCAT([DISTINCT ...
- How to RAMDISK on macOS
diskutil erasevolume HFS+ 'RAM Disk' `hdiutil attach -nomount ram://8388608`