用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则
转载请注明出处:http://www.codelast.com/
line search(一维搜索,或线搜索)是最优化(Optimization)算法中的一个基础步骤/算法。它可以分为精确的一维搜索以及不精确的一维搜索两大类。
在本文中,我想用“人话”解释一下不精确的一维搜索的两大准则:Armijo-Goldstein准则 & Wolfe-Powell准则。
之所以这样说,是因为我读到的所有最优化的书或资料,从来没有一个可以用初学者都能理解的方式来解释这两个准则,它们要么是长篇大论、把一堆数学公式丢给你去琢磨;要么是简短省略、直接略过了解释的步骤就一句话跨越千山万水得出了结论。
每当看到这些书的时候,我脑子里就一个反应:你们就不能写人话吗?
我下面就尝试用通俗的语言来描述一下这两个准则。
Armijo-Goldstein准则的核心思想有两个:①目标函数值应该有足够的下降;②一维搜索的步长α不应该太小。
文章来源:http://www.codelast.com/
有了这两个指导思想,我们来看看Armijo-Goldstein准则的数学表达式:

其中, 0<ρ<12
文章来源:http://www.codelast.com/
(1)为什么要规定 ρ∈(0,12) 这个条件?其实可以证明:如果没有这个条件的话,将影响算法的超线性收敛性(定义看这个链接,第4条)。在这个速度至关重要的时代,没有超线性收敛怎么活啊!(开个玩笑)
具体的证明过程,大家可以参考袁亚湘写的《最优化理论与方法》一书,我没有仔细看,我觉得对初学者,不用去管它。
(2)第1个不等式的左边式子的泰勒展开式为:
f(xk+αkdk)=f(xk)+αkgkTdk+o(αk)
去掉高阶无穷小,剩下的部分为: f(xk)+αkgkTdk
而第一个不等式右边与之只差一个系数 ρ
我们已知了 gkTdk<0 (这是 dk 为下降方向的充要条件),并且 ρ∈(0,12) ,因此,1式右边仍然是一个比 f(xk) 小的数,即:
f(xk)+αkρgkTdk<f(xk)
也就是说函数值是下降的(下降是最优化的目标)。
文章来源:http://www.codelast.com/
(3)由于 ρ∈(0,12) 且 gkTdk<0 ( dk 是一个下降方向的充要条件),故第2个式子右边比第1个式子右边要小,即:
αk(1−ρ)gkTdk<αkρgkTdk<0
如果步长 α 太小的话,会导致这个不等式接近于不成立的边缘。因此,式2就保证了 α 不能太小。
(4)我还要把很多书中都用来描述Armijo-Goldstein准则的一幅图搬出来说明一下(亲自手绘):

文章来源:http://www.codelast.com/
横坐标是 α ,纵坐标是 f ,表示在 xk,dk 均为常量、 α 为自变量变化的情况下,目标函数值随之变化的情况。
之所以说 xk,dk 均为常量,是因为在一维搜索中,在某一个确定的点 xk 上,搜索方向 dk 确定后,我们只需要找到一个合适的步长 α 就可以了。
当 x 为常量, α 为自变量时, f(x+αd) 可能是非线性函数(例如目标函数为 y=x2 时)。因此图中是一条曲线。
右上角的 f(xk+αdk) 并不是表示一个特定点的值,而是表示这条曲线是以 α 为自变量、 xk,dk 为常量的函数图形。
当 α=0 时,函数值为 f(xk) ,如图中左上方所示。水平的那条虚线是函数值为 f(xk) 的基线,用于与其他函数值对比。
f(xk)+αkρgkTdk 那条线在 f(xk) 下方(前面已经分析过了,因为 gkTdk<0 ), f(xk)+αk(1−ρ)gkTdk 又在 f(xk)+αkρgkTdk 的下方(前面也已经分析过了),所以Armijo-Goldstein准则可能会把极小值点(可接受的区间)判断在区间bc内。显而易见,区间bc是有可能把极小值排除在外的(极小值在区间ed内)。
所以,为了解决这个问题,Wolfe-Powell准则应运而生。
文章来源:http://www.codelast.com/
【3】Wolfe-Powell准则
在某些书中,你会看到“Wolfe conditions”的说法,应该和Wolfe-Powell准则是一回事——可怜的Powell大神又被无情地忽略了...
Wolfe-Powell准则也有两个数学表达式,其中,第一个表达式与Armijo-Goldstein准则的第1个式子相同,第二个表达式为:
这个式子已经不是关于函数值的了,而是关于梯度的。
此式的几何解释为:可接受点处的切线斜率≥初始斜率的 σ 倍。
上面的图已经标出了 σgTkdk 那条线(即 e 点处的切线),而初始点( α=0 的点)处的切线是比 e 点处的切线要“斜”的,由于 σ∈(ρ,1) ,使得 e 点处的切线变得“不那么斜”了——不知道这种极为通俗而不够严谨的说法,是否有助于你理解。
这样做的结果就是,我们将极小值包含在了可接受的区间内( e 点右边的区间)。
文章来源:http://www.codelast.com/
Wolfe-Powell准则到这里还没有结束!在某些书中,你会看到用另一个所谓的“更强的条件”来代替(3)式,即:
这个式子和(3)式相比,就是左边加了一个绝对值符号,右边换了一下正负号(因为 gTkdk<0 ,所以 −σgTkdk>0 )。
这样做的结果就是:可接受的区间被限制在了 [b,d] 内,如图:

图中红线即为极小值被“夹击”的生动演示。
用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则的更多相关文章
- [原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则
[原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则 转载请注明出处:http://www.codelast.com/ line search(一维 ...
- 用”人话”解释CNN —— 对单个特征图进行视觉化
转载自:http://nooverfit.com/wp/pycon-2016-tensorflow-研讨会总结-tensorflow-手把手入门-用人话解释cnn 首先什么是CNN? 其实, 用”人话 ...
- 【阿里云产品公测】大数据下精确快速搜索OpenSearch
[阿里云产品公测]大数据下精确快速搜索OpenSearch 作者:阿里云用户小柒2012 相信做过一两个项目的人都会遇到上级要求做一个类似百度或者谷歌的站内搜索功能.传统的sql查询只能使用like ...
- 【原创】回溯线搜索 Backtracking line search
机器学习中很多数值优化算法都会用到线搜索(line search).线搜索的目的是在搜索方向上找到是目标函数\(f(x)\)最小的点.然而,精确找到最小点比较耗时,由于搜索方向本来就是近似,所以用较小 ...
- 苹果手机的SB系列(1)听不懂人话的sir
写在前面,因手买错了(至于怎么买错了不解释)手机才买了一个苹果,价格不扉,但实在让人很不爽.记下了SB的点点. Sir听不懂人话,我让他查非洲安哥拉的时间,却屡次返回美国安哥拉洲的时间,很自恋.
- grep精确匹配搜索某个单词的用法 (附: grep高效用法小结))
grep(global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正 ...
- 线搜索(line search)方法
在机器学习中, 通常需要求某个函数的最值(比如最大似然中需要求的似然的最大值). 线搜索(line search)是求得一个函数\(f(x)\)的最值的两种常用迭代方法之一(另外一个是trust re ...
- 一段有关线搜索的从python到matlab的代码
在Udacity上很多关于机器学习的课程几乎都是基于python语言的,博主“ttang”的博文“重新发现梯度下降法——backtracking line search”里对回溯线搜索的算法实现也是用 ...
- CVPR2021| 行人搜索中的第一个anchor-free模型:AlignPS
论文地址:https://arxiv.org/abs/2103.11617 代码地址:https://github.com/daodaofr/AlignPS 前言: 本文针对anchor-free模型 ...
随机推荐
- Linux进程管理 (9)实时调度类分析,以及FIFO和RR对比实验
关键词:rt_sched_class.SCHED_FIFO.SCHED_RR.sched_setscheduler().sched_setaffinity().RR_TIMESLICE. 本文主要关注 ...
- 每秒高达1.6亿次操作的并发键值存储库 FASTER 诞生
FASTER 在过去十年中,云中的数据密集型应用程序和服务有了巨大的增长.数据在各种边设施(例如,设备,浏览器和服务器)上创建,并由云应用程序处理用来获得数据价值或做出决策.应用程序和服务可以处理收集 ...
- 用asp.net core 把用户访问记录优化到极致
菜菜呀,前几天做的用户空间,用户反映有时候比较慢呀 CEO,CTO,CFO于一身的CXO 是吗? 菜菜 我把你拉进用户反馈群,你解决一下呀 CEO,CTO,CFO于一身的CXO (完了,以后没清净时候 ...
- Bootstrap 栅格 样式 组件 插件
-----------------------------起先是我们造成习惯,后来是习惯造成我们. day 51 Bootstrap 官方网站: bootcss.com/ <!DOCTYP ...
- 计算机名称改名之后,tfs连接问题
计算机名称改名之后,我们发现tfs连接会有问题 打开vs下的“开发人员命令提示”执行下面两条语句: 1.tf workspaces 2.tf workspaces /collection:http:/ ...
- Flask入门的第一个项目进阶版
前言: 此次版本增加[一对多]数据库关系和动态路由设置. 一.数据库设计 environments表与variable1表的关系为:一对多.variable1.env_id设置为外键,与environ ...
- koa2实现session的两种方式(基于Redis 和MySQL)
一.基于MySQL的实现方式 这种方式需要安装koa-session-minimal和koa-mysql-session两个依赖. 执行 npm install koa-session-minimal ...
- C#中委托,匿名函数,lamda表达式复习
一.委托 1.就给类比较,类用class声明,委托用delegate声明. 2.委托要指向一个真正的方法. 3.委托的签名,要和指向的方法一样. //1.声明一个委托 public delegate ...
- c++入门之 再话类
对于类,其结构并不难,但要理解其设计思想也并不容易,在此,我们可以通过下面的代码进一步理解和使用类: # ifndef VECTOR_H_ # define VECTOR_H_ # include & ...
- Array Division CodeForces - 808D (构造+实现)
Vasya has an array a consisting of positive integer numbers. Vasya wants to divide this array into t ...