Matplotlib基础知识

一、Matplotlib基础知识

  • Matplotlib中的基本图表包括的元素

    • x轴和y轴 axis

      水平和垂直的轴线
    • x轴和y轴刻度 tick

      刻度标示坐标轴的分隔,包括最小刻度和最大刻度
    • x轴和y轴刻度标签 tick label

      表示特定坐标轴的值
    • 绘图区域(坐标系) axes

      实际绘图的区域
    • 坐标系标题 title

      实际绘图的区域
    • 轴标签 xlabel ylabel

      实际绘图的区域
#  使用包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame # matplotlib 中 使用中文
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

包含单条曲线的图

  • 注意:y,x轴的值必须为数字
x=[1,2,3,4,5]
y=[2,4,6,8,10]
# 显示 图片
plt.plot(x,y) # 绘制抛物线
x = np.linspace(-np.pi,np.pi,num=10)
y = x**2
plt.plot(x,y) # 绘制正弦曲线图
x = x
# 正弦
y = np.sin(x)
plt.plot(x,y)

包含多个曲线的图

  • 连续调用多次plot函数
plt.plot(x,y)
plt.plot(x-2,y-2)
plt.plot(x,y,x+2,y+3)

多个曲线图绘制在一个table区域中:对象形式创建表图

  • a=plt.subplot(row,col,loc) 创建曲线图
  • a.plot(x,y) 绘制曲线图
ax1 = plt.subplot(2,2,1)
ax1.plot(x,y) ax2 = plt.subplot(2,2,2)
ax2.plot(x,y) ax3 = plt.subplot(2,2,3)
ax3.plot(x,y) ax4 = plt.subplot(2,2,4)
ax4.plot(x,y)
  • 设置画布比例:plt.figure(figsize=(a,b)) a:x刻度比例 b:y刻度比例 (2:1)表示x刻度显示为y刻度显示的2倍
    plt.figure(figsize=(8,8))
    plt.plot(x,y)

坐标轴标签

  • s 标签内容

  • color 标签颜色

  • fontsize 字体大小

  • rotation 旋转角度

  • plt的xlabel方法和ylabel方法 title方法

    plt.plot(x,y)
    # x 轴
    plt.xlabel('xxx')
    # y 轴
    plt.ylabel('yyy')
    # 图片标题
    plt.title('ttt')

图例

legend方法

两种传参方法:

  • 分别在plot函数中增加label参数,再调用plt.legend()方法显示
  • 直接在legend方法中传入字符串列表!
plt.plot(x,y,label='temp')
plt.plot(x+4,y-3,label='dist')
plt.legend()

legend的参数

​ - loc参数

  • loc参数用于设置图例标签的位置,一般在legend函数内
  • matplotlib已经预定义好几种数字表示的位置
plt.plot(x,y,label='temp')
plt.plot(x+4,y-3,label='dist')
plt.legend(loc=0,ncol=2)

​ - ncol参数

  • ncol控制图例中有几列,在legend中设置ncol

二. 保存图片

  • 使用figure对象的savefig函数来保存图片

    fig = plt.figure()---必须放置在绘图操作之前

    figure.savefig的参数选项

    • filename

      含有文件路径的字符串或Python的文件型对象。图像格式由文件扩展名推断得出,例如,.pdf推断出PDF,.png推断出PNG (“png”、“pdf”、“svg”、“ps”、“eps”……)
    • dpi

      图像分辨率(每英寸点数),默认为100
    • facecolor ,打开保存图片查看 图像的背景色,默认为“w”(白色)
    fig = plt.figure()
    
    plt.plot(x,y,label='temp')
    plt.plot(x+4,y-3,label='dist')
    plt.legend(loc=0,ncol=2)
    # dpi 像素
    fig.savefig('./fig.jpg',dpi=200)

    设置plot的风格和样式

    plot语句中支持除X,Y以外的参数,以字符串形式存在,来控制颜色、线型、点型等要素,语法形式为:

    plt.plot(X, Y, 'format', ...)

颜色

参数color或c

plt.plot(x,y,c='yellow',alpha=0.5)
颜色值的方式
  • 别名

    • color='r'
  • 合法的HTML颜色名

    • color = 'red'
颜色 别名 HTML颜色名 颜色 别名 HTML颜色名
蓝色 b blue 绿色 g green
红色 r red 黄色 y yellow
青色 c cyan 黑色 k black
洋红色 m magenta 白色 w white
  • HTML十六进制字符串

    • color = '#eeefff'
  • 归一化到[0, 1]的RGB元组

    • color = (0.3, 0.3, 0.4)
透明度

alpha参数

线型

参数linestyle或ls

线条风格 描述 线条风格 描述
'-' 实线 ':' 虚线
'--' 破折线 'steps' 阶梯线
'-.' 点划线 'None' / ',' 什么都不画
plt.plot(x,y,ls='steps',lw=3)
[<matplotlib.lines.Line2D at 0x15ddae8ea90>]
线宽

linewidth或lw参数

点型

  • marker 设置点形
  • markersize 设置点形大小
标记 描述 标记 描述
's' 正方形 'p' 五边形
'h' 六边形1 'H' 六边形2
'8' 八边形
标记 描述 标记 描述
'.' 'x' X
'*' 星号 '+' 加号
',' 像素
标记 描述 标记 描述
'o' 圆圈 'D' 菱形
'd' 小菱形 '','None',' ',None
标记 描述 标记 描述
'1' 一角朝下的三脚架 '3' 一角朝左的三脚架
'2' 一角朝上的三脚架 '4' 一角朝右的三脚架
plt.plot(x,y,marker='d')
# 绘制线      plt.plot(x1,y1,x2,y2)
# 网格线 plt.grid(True) axes.grid(color,ls,lw,alpha)
# 获取坐标系 plt.subplot(n1,n2,n3)
# 坐标轴标签 plt.xlabel() plt.ylabel()
# 坐标系标题 plt.title()
# 图例 plt.legend([names],ncol=2,loc=1) plt.plot(label='name')
# 线风格 -- -. : None step
# 图片保存 figure.savefig()
# 点的设置 marker markersize markerfacecolor markeredgecolor\width
# 坐标轴刻度 plt.xticks(刻度列表,刻度标签列表) plt.yticks()
# axes.set_xticks(刻度列表) axes.set_xticklabels(刻度标签列表)

三. 2D图形

直方图

  • 是一个特殊的柱状图,又叫做密度图。

【直方图的参数只有一个x!!!不像条形图需要传入x,y】

plt.hist()的参数

  • bins

    直方图的柱数,可选项,默认为10
  • color

    指定直方图的颜色。可以是单一颜色值或颜色的序列。如果指定了多个数据集合,例如DataFrame对象,颜色序列将会设置为相同的顺序。如果未指定,将会使用一个默认的线条颜色
  • orientation

    通过设置orientation为horizontal创建水平直方图。默认值为vertical
data = [1,2,3,3,4,2,5]
plt.hist(data)
  • 返回值 :

    1: 直方图向量,是否归一化由参数normed设定

    2: 返回各个bin的区间范围

    3: 返回每个bin里面包含的数据,是一个list

条形图:plt.bar()

  • 参数:第一个参数是索引。第二个参数是数据值。第三个参数是条形的宽度

    -【条形图有两个参数x,y】

    • width 纵向设置条形宽度
    • height 横向设置条形高度

    bar()、barh()

x = [1,2,3]
y = [2,3,4]
plt.barh(x,y)

饼图

【饼图也只有一个参数x】

pie()

饼图适合展示各部分占总体的比例,条形图适合比较各部分的大小

  • 饼图阴影、分裂等属性设置

    #labels参数设置每一块的标签;

    #labeldistance参数设置标签距离圆心的距离(比例值)

    #autopct参数设置比例值小数保留位(%.3f%%);

    #pctdistance参数设置比例值文字距离圆心的距离

    #explode参数设置每一块顶点距圆心的长度(比例值,列表);

    #colors参数设置每一块的颜色(列表);

    #shadow参数为布尔值,设置是否绘制阴影

    #startangle参数设置饼图起始角度

    a = [0.3,0.2]
    plt.pie(a) arr=[11,22,31,15]
    plt.pie(arr,labels=['a','b','c','d']) #labeldistance参数设置标签距离圆心的距离(比例值)
    arr=[11,22,31,15]
    plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3) #autopct参数设置比例值小数保留位(%.3f%%);
    arr=[11,22,31,15]
    plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3,autopct='%.6f%%') ##explode参数设置每一块顶点距圆心的长度(比例值,列表);
    arr=[11,22,31,15]
    plt.pie(arr,labels=['a','b','c','d'],labeldistance=0.3,shadow=True,explode=[0.2,0.3,0.2,0.4])

散点图:因变量随自变量而变化的大致趋势

【散点图需要两个参数x,y,但此时x不是表示x轴的刻度,而是每个点的横坐标!】

scatter()

x = [1,2,3,4,5]
y = [2,4,6,8,10] plt.scatter(x,y) # plt.scatter(x,y,marker='d',c="rbgy") 设置不同的散点颜色
temp = np.random.randint(10,40,size=(30,))
dist = np.random.randint(70,100,size=(30,))
# 显示颜色 rbyg = red, blue yellow green 随机
plt.scatter(temp,dist,c='rbyg')

Matplotlib 绘图 用法的更多相关文章

  1. matplotlib绘图基本用法-转自(http://blog.csdn.net/mao19931004/article/details/51915016)

    本文转载自http://blog.csdn.net/mao19931004/article/details/51915016 <!DOCTYPE html PUBLIC "-//W3C ...

  2. matplotlib 绘图

    http://blog.csdn.net/jkhere/article/details/9324823 都打一遍 5 matplotlib-绘制精美的图表 matplotlib 是python最著名的 ...

  3. python 中matplotlib 绘图

    python 中matplotlib 绘图 数学建模需要,对于绘图进行简单学习 matpoltlib之类的包安装建议之间用anaconda 绘制一条y=x^2的曲线 #比如我们要绘制一条y=x^2的曲 ...

  4. python实战学习之matplotlib绘图续

    学习完matplotlib绘图可以设置的属性,还需要学习一下除了折线图以外其他类型的图如直方图,条形图,散点图等,matplotlib还支持更多的图,具体细节可以参考官方文档:https://matp ...

  5. matplotlib绘图的基本操作

    转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...

  6. python中利用matplotlib绘图可视化知识归纳

    python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...

  7. python实战学习之matplotlib绘图

    matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot f ...

  8. 【原】在Matplotlib绘图中添加Latex风格公式

    Matplotlib绘图的过程中,可以为各个轴的Label,图像的Title.Legend等元素添加Latex风格的公式. 只需要在Latex公式的文本前后各增加一个$符号,Matplotlib就可以 ...

  9. Matplotlib绘图双纵坐标轴设置及控制设置时间格式

    双y轴坐标轴图 今天利用matplotlib绘图,想要完成一个双坐标格式的图. fig=plt.figure(figsize=(20,15)) ax1=fig.add_subplot(111) ax1 ...

随机推荐

  1. H5 五子棋源码

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  2. 【C#】list 去重(转载)

    Enumerable.Distinct 方法 是常用的LINQ扩展方法,属于System.Linq的Enumerable方法,可用于去除数组.集合中的重复元素,还可以自定义去重的规则. 有两个重载方法 ...

  3. struts2_struts2基本配置

    基本配置 1.新建web项目 2.导入jar包 struts2所需jar包下载: https://files.cnblogs.com/files/aihuadung/struts%E6%89%80%E ...

  4. 清除float影响

    条件: 父元素中有子元素float的话,可能就会影响父元素的高度,从而影响布局: 解决方案: 1.直接给父元素定高: 弊端:必须知道父元素的高: 2. 父元素使用overflow属性值为hidden解 ...

  5. 2017 ACM-ICPC西安网赛B-Coin

    B-Coin Bob has a not even coin, every time he tosses the coin, the probability that the coin's front ...

  6. 13 ,CSS 入门基础,行内排版内嵌式排版和外部排版样式

    1.认识 CSS 2.传统 HTML 设计网页版面的缺点 3.CSS 的特点 4.CSS 的排版样式 13.1 认识CSS CSS的英文全名是 Cascading Style Sheets,中文可翻译 ...

  7. js (jQuery)分组数据

    function getobjArr (data) { var result = []; data.HELMET.system = '系统分类' // console.log(data) $.each ...

  8. js 毫秒转天时分秒

    formatDuring: function(mss) { var days = parseInt(mss / (1000 * 60 * 60 * 24)); var hours = parseInt ...

  9. Jedis 简单案例

    POM 依赖 <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> < ...

  10. JavaScript面向对象编程指南(三) 函数

    第3章 函数 3.1 什么是函数 函数:本质是一种代码的分组形式.函数的声明如下: <script type="text/javascript"> /*函数的声明组成: ...