Sudoku
Time Limit: 10000MS   Memory Limit: 65536K
Total Submissions: 5769   Accepted: 2684

Description

A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells are filled with letters from A to P (the first 16 capital letters of the English alphabet), as shown in figure 1a. The game is to fill all the empty grid cells with letters from A to P such that each letter from the grid occurs once only in the line, the column, and the 4x4 square it occupies. The initial content of the grid satisfies the constraints mentioned above and guarantees a unique solution. 
 
Write a Sudoku playing program that reads data sets from a text file.

Input

Each data set encodes a grid and contains 16 strings on 16 consecutive lines as shown in figure 2. The i-th string stands for the i-th line of the grid, is 16 characters long, and starts from the first position of the line. String characters are from the set {A,B,…,P,-}, where – (minus) designates empty grid cells. The data sets are separated by single empty lines and terminate with an end of file.

Output

The program prints the solution of the input encoded grids in the same format and order as used for input.

Sample Input

--A----C-----O-I
-J--A-B-P-CGF-H-
--D--F-I-E----P-
-G-EL-H----M-J--
----E----C--G---
-I--K-GA-B---E-J
D-GP--J-F----A--
-E---C-B--DP--O-
E--F-M--D--L-K-A
-C--------O-I-L-
H-P-C--F-A--B---
---G-OD---J----H
K---J----H-A-P-L
--B--P--E--K--A-
-H--B--K--FI-C--
--F---C--D--H-N-

Sample Output

FPAHMJECNLBDKOGI
OJMIANBDPKCGFLHE
LNDKGFOIJEAHMBPC
BGCELKHPOFIMAJDN
MFHBELPOACKJGNID
CILNKDGAHBMOPEFJ
DOGPIHJMFNLECAKB
JEKAFCNBGIDPLHOM
EBOFPMIJDGHLNKCA
NCJDHBAEKMOFIGLP
HMPLCGKFIAENBDJO
AKIGNODLBPJCEFMH
KDEMJIFNCHGAOPBL
GLBCDPMHEONKJIAF
PHNOBALKMJFIDCEG
IAFJOECGLDPBHMNK

Source

这个就是2676变了一下形

直接上代码了

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int S[maxn], head[maxn], vis[maxn];
int U[maxn], D[maxn], L[maxn], R[maxn];
int C[maxn], X[maxn];
int n, m, ans, ret, ans1; void init()
{
for(int i = ; i <= m; i++)
D[i] = i, U[i] = i, R[i] = i + , L[i] = i - ;
L[] = m, R[m] = ;
mem(S, ), mem(head, -);
ans = m + ;
} void delc(int c)
{
L[R[c]] = L[c], R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
U[D[j]] = U[j], D[U[j]] = D[j], S[C[j]]--; } void resc(int c)
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
U[D[j]] = j, D[U[j]] = j, S[C[j]]++;
L[R[c]] = c, R[L[c]] = c;
} void add(int r, int c)
{
ans++, S[c]++, C[ans] = c, X[ans] = r;
D[ans] = D[c];
U[ans] = c;
U[D[c]] = ans;
D[c] = ans;
if(head[r] < ) head[r] = L[ans] = R[ans] = ans;
else L[ans] = head[r], R[ans] = R[head[r]],L[R[head[r]]] = ans, R[head[r]] = ans;
} bool dfs(int sh)
{
if(!R[])
{
sort(vis, vis + * );
int cnt = ;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
int num = vis[cnt++]; num=num - (i * + j) * ;
printf("%c", 'A' + num - );
// cout << 111 << endl; }
printf("\n");
}
printf("\n"); return true;
}
int c = R[];
for(int i = R[]; i; i = R[i]) if(S[c] > S[i]) c = i;
delc(c);
for(int i = D[c]; i != c; i = D[i])
{
vis[sh] = X[i];
for(int j = R[i]; j != i; j = R[j])
delc(C[j]);
if(dfs(sh + )) return true;
for(int j = L[i]; j != i; j = L[j])
resc(C[j]);
}
resc(c);
return false;
} char str[][]; void build(int x, int y, int k)
{
ans1 = (x * + y - ) * + k;
add(ans1, x * + k);
add(ans1, * + (y - ) * + k);
add(ans1, * * + x * + y);
int block = (y - ) / * + x / ;
add(ans1, * * + block * + k); } int main()
{ while(~scanf("%s", str[]))
{
m = * * ;
init(); for(int i = ; i < ; i++)
{
rs(str[i]);
}
for(int i = ; i < ; i++)
for(int j = ; j <= ; j++)
{
if(str[i][j - ] == '-')
for(int k = ; k <= ; k++) build(i, j, k);
else
build(i, j, str[i][j - ] - ('A' - ));
}
dfs();
} return ;
}

Sudoku POJ - 3076的更多相关文章

  1. Sudoku POJ - 3076 (dfs+剪枝)

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  2. (简单) POJ 3076 Sudoku , DLX+精确覆盖。

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  3. POJ 3076 Sudoku DLX精确覆盖

    DLX精确覆盖模具称号..... Sudoku Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 4416   Accepte ...

  4. POJ 3076 / ZOJ 3122 Sudoku(DLX)

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  5. 【POJ 3076】 Sudoku

    [题目链接] http://poj.org/problem?id=3076 [算法] 将数独问题转化为精确覆盖问题,用Dancing Links求解 [代码] #include <algorit ...

  6. POJ 3076 Sudoku

    3076 思路: dfs + 剪枝 首先,如果这个位置只能填一种字母,那就直接填 其次,如果对于每一种字母,如果某一列或者某一行或者某一块只能填它,那就填它 然后,对于某个位置如果不能填字母了,或者某 ...

  7. POJ 3076 Sudoku (dancing links)

    题目大意: 16*16的数独. 思路分析: 多说无益. 想说的就是dancing links 的行是依照 第一行第一列填 1 第一行第二列填 2 -- 第一行第十五列填15 第一行第二列填 1 -- ...

  8. Sudoku POJ - 2676(DLX)

    Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25356   Accepted: 11849   Specia ...

  9. POJ 3076 SUKODU [Dangcing Links DLX精准覆盖]

    和3074仅仅有数目的不同,3074是9×9.本来想直接用3074的.然后MLE,,,就差那么20M的空间,,. 从这里学习到了解法: http://www.cnblogs.com/ylfdrib/a ...

随机推荐

  1. Graph Without Long Directed Paths CodeForces - 1144F (dfs染色)

    You are given a connected undirected graph consisting of nn vertices and mm edges. There are no self ...

  2. 软工网络15团队作业4——Alpha阶段敏捷冲刺

    Deadline: 2018-4-29 10:00PM,以提交至班级博客时间为准. 根据以下要求,团队在日期区间[4.16,4.29]内,任选8天进行冲刺,冲刺当天晚10点前发布一篇随笔,共八篇. 另 ...

  3. 分布式事务 spring 两阶段提交 tcc

    请问分布式事务一致性与raft或paxos协议解决的一致性问题是同一回事吗? - 知乎 https://www.zhihu.com/question/275845393 分布式事务11_TCC 两阶段 ...

  4. React Native之倒计时组件的实现(ios android)

    React Native之倒计时组件的实现(ios android) 一,需求分析 1,app需实现类似于淘宝的活动倒计时,并在倒计时结束时,活动也结束. 2,实现订单倒计时,并在倒计时结束时,订单关 ...

  5. [转帖]SAP一句话入门:Plant Maintenance

    SAP一句话入门:Plant Maintenance http://blog.vsharing.com/MilesForce/A618273.html PM就是Plant Maintenance(本文 ...

  6. .Net MVC4 log4net的配置

    一.首先在使用log4net记录日志的时候,我们要引用log4net.dll文件 二.在web.config中添加一下配置代码 <configSections> <!-- For m ...

  7. 动态SQL1

    If标签 动态SQL可以说是MyBatis最强大之处了,这块的应用主要有四个方面if,choose,trim和foreach,接下来先说说if. 顾名思义,if是用来判断条件的,现在假设我们有个需求, ...

  8. 微信小程序自定义组件

    要做自定义组件,我们先定一个小目标,比如说我们在小程序中实现一下 WEUI 中的弹窗组件,基本效果图如下. Step1 我们初始化一个小程序(本示例基础版本库为 1.7 ),删掉里面的示例代码,并新建 ...

  9. java中级——二叉树比较冒泡和选择排序

    上次我们说到二叉树排序比较,给出如下的题目 题目:创建五万个随机数,然后用分别用冒泡法,选择法,二叉树3种排序算法进行排序,比较哪种更快 废话不说直接上源码,可以看控制台结果 注意的是 需要我们需要上 ...

  10. python爬虫之scrapy的pipeline的使用

    scrapy的pipeline是一个非常重要的模块,主要作用是将return的items写入到数据库.文件等持久化模块,下面我们就简单的了解一下pipelines的用法. 案例一: items池 cl ...