题目描述

输入

输入包含一行两个整数N和K,1<=N,K<=10^9

输出

一行一个整数,表示不同方案数目模1,000,000,007的值。

样例输入

2 2

样例输出

16
 
可以发现对于集合中每个元素的选取都是互不影响的,设$f(n,k)$为输入$n,k$时的答案,那么$f(n,k)=f(1,k)^n$。
我们现在来推导$f(1,k)$的结果:可以发现$1$的位置一定是连续的,设$a_{i}$表示第$i$列最后选取到了$a_{i}$行,若从第$1$列到第$m$列均存在被选取。
那么可以得到结论:$a_{i+1}\le a_{i}(1\le i <m)$。
设$g[i][j]$表示只有前$i$列有$1$,其中第$i$列最后选取到了第$j$行的方案数,可以得到递推式:$g[i][j]=\sum\limits_{p=j}^{k}g[i-1][p]$。
通过观察可以得到:$g[i][j]=g[i-1][j]+g[i][j+1]$,这实际上就是一个顺时针旋转了$45^{\circ}$的杨辉三角。
那么加上都不选取的方案数为$1$,$f(1,k)=1+\sum g[i][j]=2^k$,由此可得$f(n,k)=2^{nk}$。
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,k;
int mod=1000000007;
ll quick(ll x,ll y)
{
ll res=1;
while(y!=0)
{
if(y%2==1)
{
res=(res*x)%mod;
}
x=(x*x)%mod;
y/=2;
}
return res%mod;
}
int main()
{
scanf("%d%lld",&n,&k);
ll sum=1ll*n*k;
printf("%lld",quick(2,sum));
}

BZOJ4475[Jsoi2015]子集选取——递推(结论题)的更多相关文章

  1. [BZOJ4475][JSOI2015]子集选取[推导]

    题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...

  2. BZOJ4475 [Jsoi2015]子集选取

    Description 有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\s ...

  3. BZOJ4475 JSOI2015子集选取(动态规划)

    数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了.暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现 ...

  4. BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】

    Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...

  5. 【BZOJ4475】 [Jsoi2015]子集选取

    题目描述 数据范围 \(1\leq N,K \leq 10^9\) \(solution\) 集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况 问题转化为一个\(0/1\)的三角 ...

  6. 【BZOJ4475】子集选取(计数)

    题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...

  7. [题解] LuoguP6075 [JSOI2015]子集选取

    传送门 ps: 下面\(n\)和\(k\)好像和题目里的写反了...将就着看吧\(qwq\) 暴力打个表答案就出来了? 先写个结论,答案就是\(2^{nk}\). 为啥呢? 首先你需要知道,因为一个集 ...

  8. 洛谷 P6075 [JSOI2015]子集选取

    链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...

  9. bzoj 4475: [Jsoi2015]子集选取

    233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...

随机推荐

  1. Windows Community Toolkit 3.0 - UniformGrid

    概述 UniformGrid 控件是一个响应式的布局控件,允许把 items 排列在一组均匀分布的行或列中,以填充整体的可用显示空间,形成均匀的多个网格.默认情况下,网格中的每个单元格大小相同. 这是 ...

  2. Python全栈开发之路 【第一篇】:Python 介绍

    本节内容 一.Python介绍 python的创始人为荷兰人——吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本 ...

  3. 安装配置JDK和Eclipse的步骤

    导读 作为Java程序员,需要在Linux系统上安装Eclipse,很多人不知要如何安装,在安装Eclipse前,还需安装JDK,Linux下如何安装JDK和Eclipse呢?下面跟朋友们介绍下Lin ...

  4. 第十二届湖南省赛 (B - 有向无环图 )(拓扑排序+思维)好题

    Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y ...

  5. Elasticsearch 关键字:索引,类型,字段,索引状态,mapping,文档

    1. 索引(_index)索引:说的就是数据库的名字.我这个说法是对应到咱经常使用的数据库. 结合es的插件 head 来看. 可以看到,我这个地方,就有这么几个索引,索引就是数据库,后面是这个数据库 ...

  6. Mysql 索引问题集锦

    一.Mysql 中的索引 索引:顾名思义用来检索.查找数据的key (字段) 几种Mysql 中的常见索引分类:普通索引(联合索引).唯一索引.主键索引.全文索引 优点:使得查询数据变快 缺点:更新数 ...

  7. 【学习总结】GirlsInAI ML-diary day-3-数据类型

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day3 数据类型 熟悉一下计算时可能碰到的数据类型.(计算时...) 1-打开jupyter,new一个新python文件 ...

  8. 基于CRM跟进(活动)记录中关键字识别的客户跟进加权值的成单概率算法

    1.提取销售人员的跟进记录,分析其中的骂人文字(负面情绪),将有负面情绪的客户的跟进排期,进行降权(权重)操作.重点跟进加权值较高的客户. 执行办法: 将销售与客户沟通的语音:电话,微信,QQ,通过调 ...

  9. asp.net mvc area实现多级controller和多级view

    经常需要描述这样的项目结构 ~:. //web根目录├─.admin   //管理员功能目录│  └─index.html    //管理员目录页面├─.user                  / ...

  10. js根据ip自动获取地址(省市区)

    HTML: <html> <head> <meta charset="utf-8"> <meta name="viewport& ...