绘制ROC曲线
什么是ROC曲线
ROC曲线是什么意思,书面表述为:
“ROC 曲线(接收者操作特征曲线)是一种显示分类模型在所有分类阈值下的效果的图表。”
好吧,这很不直观。其实就是一个二维曲线,横轴是FPR,纵轴是TPR:

至于TPR,FPR怎么计算:
首先要明确,我们是在讨论分类问题中,讨论怎样绘制ROC曲线的,大前提是分类问题。别想太多,就当是二分类问题好了,一类是Positive,一类是Negative
分类模型的预测结果,被阈值化之后,判定为TP,FP,TN,FN四种情况:
- if Y_pred ≥ thresh and Y_gt is Positive, then TP++
- if Y_pred ≥ thresh and Y_gt is Negative, then FP++
- if Y_pred < thresh and Y_gt is Positive, then FN++
- if Y_pred < thresh and Y_gt is Negative, then TN++
然后TPR, FPR的定义为
TPR = TP / (TP + FN) (也就是Recall)
FPR = FP / (FP + TN)
举个栗子
假设你现在做机器学习笔试题,题目给了分类任务中的测试集标签和分类模型的预测结果,也就是给了Y_pred和Y_gt,让你手绘AUC曲线。Can you draw it?
答案一定是Yes, I can(看一下就会了)。
gt: [0, 1, 0, 1]. pred: [0.1, 0.35, 0.4, 0.8] 那么在阈值分别取{0.1, 0.35, 0.4, 0.8}的时候,分别判断出每个pred是TP/FP/TN/FP中的哪个,进而得出当前阈值下的TPR和FPR,也就是(FPR, TPR)这一ROC曲线图上的点;对于所有阈值都计算相应的(FPR, TPR),则得到完整的ROC曲线上的几个关键点,再连线(稍微脑补一下?)就得到完整ROC曲线。(再进一步,AUC也可以计算了,不是嘛?)
计算过程如下:

绘制得到的ROC曲线为:

好吧,这个例子其实来自于如何绘制ROC曲线。
再举一个例子好了:
对于一组二元分类任务的测试集,其真实值为[0, 0, 0, 0, 1, 1, 1],模型预测为1的概率为[0.3, 0.2, 0.7, 0.5, 0.4, 0.9, 0.6],该模型在这个测试集上的ROC曲线为?(题目来源:sofasofa.io,一个有趣的机器学习社区,里面的机器学习题库)

对应的ROC曲线为:

绘制ROC曲线的更多相关文章
- sklearn 绘制roc曲线
from sklearn.metrics import roc_curve, auc import matplotlib as mpl import matplotlib.pyplot as plt ...
- [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法
分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...
- R语言︱ROC曲线——分类器的性能表现评价
笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetiv ...
- ROC曲线,AUC面积
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本, ...
- 分类器评估方法:ROC曲线
注:本文是人工智能研究网的学习笔记 ROC是什么 二元分类器(binary classifier)的分类结果 ROC空间 最好的预测模型在左上角,代表100%的灵敏度和0%的虚警率,被称为完美分类器. ...
- 评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当 ...
- ROC曲线与AUC
一.ROC曲线 1.简介 ROC曲线全称是"受试者工作特征曲线 "(Receiver Operating Characteristic curve),又称为感受性曲线(Sensit ...
- R语言绘图:ggplot2绘制ROC
使用ggplot2包绘制ROC曲线 rocplot<- function(pred, truth, ...){ predob<- prediction(pred, truth) #打印AU ...
- 机器学习:评价分类结果(ROC 曲线)
一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...
随机推荐
- 3D中的旋转变换
相比 2D 中的旋转变换,3D 中的旋转变换复杂了很多.关于 2D 空间的旋转,可以看这篇文章.本文主要粗略地探讨一下 3D 空间中的旋转. 旋转的要素 所谓旋转要素就是说,我们只有知道了这些条件,才 ...
- 【转】Linux下查看系统配置
[转]Linux下查看系统配置 CPU 1. lscpu:显示cpu架构信息 [xxx@localhost ~]$ lscpu Architecture: x86_64 CPU op-mode(s): ...
- Node.js的异步IO和事件轮询
想象一下,以前我们在写程序时, 如果程序在I/O上阻塞了,当有更多请求过来时,服务器会怎么处理呢?在这种情景中通常会用多线程的方式.一种常见的实现是给每个连接分配一个线程,并为那些连接设置一个线程池 ...
- valgrind--内存泄漏检测(转)
Valgrind 概述 体系结构 Valgrind是一套Linux下,开放源代码(GPL V2)的仿真调试工具的集合.Valgrind由内核(core)以及基于内核的其他调试工具组成.内核类似于一个框 ...
- pymongo加索引以及查看索引例子
# -*- coding: utf-8 -*- # @Time : 2018/12/28 10:01 AM # @Author : cxa import pymongo db_configs = { ...
- 在vue中scss通过scoped属性设置局部变量如何设置框架样式
应用场景:在使用vue的大型单页应用页面中,我们可以通过使用scoped属性将当前组件的样式设置局部样式 界面被scoped局部化之后,不能覆盖界面里面的子组件样式,因为样式只对当前界面生效.(可以加 ...
- Nginx 测试环境配置,留作笔记使用
Nginx 测试环境配置,留做笔记 以下全是配置文件的配置,如果有疑问还请移步Nginx官网参考官方文档. 环境: [root@CentOS6-M01 conf]# cat /etc/redhat-r ...
- 【转】Java并发编程:并发容器之ConcurrentHashMap
JDK5中添加了新的concurrent包,相对同步容器而言,并发容器通过一些机制改进了并发性能.因为同步容器将所有对容器状态的访问都串行化了,这样保证了线程的安全性,所以这种方法的代价就是严重降低了 ...
- UR#13 SRAND
总感觉这位大仙讲的很清楚:bztminamoto 题意 题目讲的是求 l~r 内所有数的次大质因子,这里设 f(x) 为 x 的次大质因子 我们差分一下就变成求两个前缀和信息了 按照套路,我们考虑 S ...
- 029_shell编写工作常用工具类总结
一.检查命令的执行结果 function check_result() { result=$? flag=$1 if [[ "$result"x == "0"x ...