从零开始搭建django前后端分离项目 系列六(实战之聚类分析)
项目需求
本项目从impala获取到的数据为用户地理位置数据,每小时的数据量大概在8000万条,数据格式如下:

公司要求对这些用户按照聚集程度进行划分,将300米范围内用户数大于200的用户划分为一个簇,并计算这个簇的中心点和簇的边界点。
附模拟的数据:https://files.cnblogs.com/files/dotafeiying/test.zip
实现原理
下面我们来一步一步实现上述需求:
1、将用户按照聚集程度进行划分
我们可以选择基于密度的聚类算法DBscan算法,DBSCAN算法的重点是选取的聚合半径参数eps和聚合所需指定的数目min_samples,正好对应这里的300米和200个用户。但是需要注意的是,dbscan算法的默认距离度量为欧几里得距离,而我们需要的是球面距离,所以需要定制我们自己的距离算法运用到dbscan算法中。解决方法是:将dbscan设置为 metric='precomputed' ,这时fit传入的X参数必须为相似度矩阵,然后fit函数会直接用你这个矩阵来进行计算。这意味着我们可以用我们自定义的距离事先计算好各个向量的相似度,然后调用这个函数来获得结果。
2、识别簇的边界点
这里我使用凸包算法来计算簇的边界点,那么问题就变成:如何求一个平面内所有点的最小凸边形。在scipy.spatial 和opencv 分别有计算凸包的函数,不清楚的可以自行百度。
3、计算簇的中心点
由于dbscan算法中并没有提到获取簇中心点的方法,那么我们就需要自己设计来计算簇的中心点。现在簇的所有点已知,我们可以利用k-means算法来计算簇的中心点,只需要设置K=1(即质心为1)。
实现代码
# -*- coding:utf-8 -*-
from math import radians, cos, sin, asin, sqrt,degrees
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN, KMeans
from scipy.spatial import ConvexHull
from sklearn.cluster import MeanShift, estimate_bandwidth
from scipy.spatial.distance import pdist, squareform
from sklearn import metrics pd.set_option('display.width', 400)
pd.set_option('display.expand_frame_repr', False)
pd.set_option('display.max_columns', 70) def haversine(lonlat1, lonlat2):
lat1, lon1 = lonlat1
lat2, lon2 = lonlat2
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r if __name__=='__main__':
df=pd.read_csv('test.csv')
print(df.head())
X=df[['mr_longitude','mr_latitude']].values radius = 200
epsilon = radius / 100000
min_samples = 40 # model = DBSCAN(eps=epsilon, min_samples=min_samples)
# y_pred = model.fit_predict(X) # # 自定义度量距离
distance_matrix = squareform(pdist(X, (lambda u, v: haversine(u, v))))
db = DBSCAN(eps=300, min_samples=200, metric='precomputed')
y_pred = db.fit_predict(distance_matrix)
print(y_pred.tolist()) n_clusters_ = len(set(y_pred)) - (1 if -1 in y_pred else 0) # 获取分簇的数目
print('分簇的数目:',n_clusters_)
df['label'] = y_pred df_group = df[df['label'] != -1][['mr_longitude', 'mr_latitude', 'label']].groupby(['label'])
plt.figure(facecolor='w')
for label, group in df_group:
points = group[['mr_longitude', 'mr_latitude']].values
# 得到凸轮廓坐标的索引值,逆时针画
hull = ConvexHull(points).vertices.tolist()
hull.append(hull[0])
plt.plot(points[hull, 0], points[hull, 1], 'r--^', lw=2)
for i in range(len(hull) - 1):
plt.text(points[hull[i], 0], points[hull[i], 1], str(i), fontsize=10)
plt.scatter(X[:, 0], X[:, 1], c=y_pred,s=4)
plt.grid(True)
plt.show()
可视化

实际项目中的效果图

从零开始搭建django前后端分离项目 系列六(实战之聚类分析)的更多相关文章
- 从零开始搭建django前后端分离项目 系列一(技术选型)
前言 最近公司要求基于公司的hadoop平台做一个关于电信移动网络的数据分析平台,整个项目需求大体分为四大功能模块:数据挖掘分析.报表数据查询.GIS地理化展示.任务监控管理.由于页面功能较复杂,所以 ...
- 从零开始搭建django前后端分离项目 系列四(实战之实时进度)
本项目实现了任务执行的实时进度查询 实现方式 前端websocket + 后端websocket + 后端redis订阅/发布 实现原理 任务执行后,假设用变量num标记任务执行的进度,然后将num发 ...
- 从零开始搭建django前后端分离项目 系列三(实战之异步任务执行)
前面已经将项目环境搭建好了,下面进入实战环节.这里挑选项目中涉及到的几个重要的功能模块进行讲解. celery执行异步任务和任务管理 Celery 是一个专注于实时处理和任务调度的分布式任务队列.由于 ...
- 从零开始搭建django前后端分离项目 系列二(项目搭建)
在开始项目之前,假设你已了解以下知识:webpack配置.vue.js.django.这里不会教你webpack的基本配置.热更新是什么,也不会告诉你如何开始一个django项目,有需求的请百度,相关 ...
- 从零开始搭建django前后端分离项目 系列五(实战之excel流式导出)
项目中有一处功能需求是:需要在历史数据查询页面进行查询字段的选择,然后由后台数据库动态生成对应的excel表格并下载到本地. 如果文件较小,解决办法是先将要传送的内容全生成在内存中,然后再一次性传入R ...
- Django前后端分离项目部署
vue+drf的前后端分离部署笔记 前端部署过程 端口划分: vue+nginx的端口 是81 vue向后台发请求,首先发给的是代理服务器,这里模拟是nginx的 9000 drf后台运行在 9005 ...
- luffy项目搭建流程(Django前后端分离项目范本)
第一阶段: 1.版本控制器:Git 2.pip安装源换国内源 3.虚拟环境搭建 4.后台:Django项目创建 5.数据库配置 6.luffy前 ...
- nginx+vue+uwsgi+django的前后端分离项目部署
Vue+Django前后端分离项目部署,nginx默认端口80,数据提交监听端口9000,反向代理(uwsgi配置)端口9999 1.下载项目文件(统一在/opt/luffyproject目录) (1 ...
- List多个字段标识过滤 IIS发布.net core mvc web站点 ASP.NET Core 实战:构建带有版本控制的 API 接口 ASP.NET Core 实战:使用 ASP.NET Core Web API 和 Vue.js 搭建前后端分离项目 Using AutoFac
List多个字段标识过滤 class Program{ public static void Main(string[] args) { List<T> list = new List& ...
随机推荐
- Linux技术图谱
- Android assets文件夹之位置放置和作用
Android 的assets文件夹的放置位置,Eclipse创建项目时就生成了的,Android Studio则不太一样,AS可以包含几种方式, 1:可以在build.gradle文件下配置,加如下 ...
- 新的 Centos 服务器初始化配置
当你初次创建新的 Centos 服务器的时候, Centos 默认的配置安全性和可用性上会存在一点缺陷(运维人员往往会有初始化的脚本).为了增强服务器的安全性和可用性,有些配置你应该尽快地完成. 这篇 ...
- recovery 下界面UI旋转90 180 270修改
原文修改出自简书:https://www.jianshu.com/p/768fdd954061 应该是MTK修改的google源码,支持recovery下屏幕旋转90/180/270, 作者把MTK的 ...
- 微服务扩展新途径:Messaging
[编者按]服务编排是微服务设置的一个重要方面.本文在利用 ActiveMQ 虚拟话题来实现这一目标的同时,还会提供实用性指导.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 目前,微服务使用 ...
- Orchard详解--第六篇 CacheManager 2
接上一篇,关于ICacheContextAccessor先看一下默认实现,用于保存一个获取上下文,且这个上下文是线程静态的: public class DefaultCacheContextAcces ...
- [20181122]模拟ORA-08103错误.txt
[20181122]模拟ORA-08103错误.txt $ oerr ora 810308103, 00000, "object no longer exists"// *Caus ...
- 原生js :removeClass和addClass
function removeClass(obj, aClass) { var re = new RegExp('\\b' + aClass + '\\b'); if (obj.className ! ...
- linux alias 用法
转自linux alias http://www.maomao365.com/?p=2597 : linux中命令别名设置: <span style="color:blue;font- ...
- iis 限制动态IP地址访问次数
An IP Address Blocking HttpModule for ASP.NET in 9 minutes namespace YourModuleNameHere 10 { 11 publ ...