python性能分析之cProfile模块
cProfile是标准库内建的分析工具的其中一个,另外两个是hotshot和profile
-s cumulative
-s cumulative开关告诉cProfile对每个函数累计花费的时间进行排序,他能让我看到代码最慢的部分。
我们有这样一个函数。
loopdemo.py
def foo():
for a in range(0, 101):
for b in range(0, 101):
if a + b == 100:
yield a, b
if __name__ == '__main__':
for item in foo():
print(item)
运行下面命令
python3 -m cProfile -s cumulative loopdemo.py
得到如下结果
206 function calls in 0.001 seconds
#在0.01秒内共发生了206次函数调用。包括cProfile的开销。
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}
1 0.000 0.000 0.001 0.001 loopdemo.py:7(<module>)
102 0.001 0.000 0.001 0.000 loopdemo.py:7(foo)
101 0.001 0.000 0.001 0.000 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
其中对参数的解释:
ncalls:表示函数调用的次数;
tottime:表示指定函数的总的运行时间,除掉函数中调用子函数的运行时间;
percall:(第一个percall)等于 tottime/ncalls;
cumtime:表示该函数及其所有子函数的调用运行的时间,即函数开始调用到返回的时间;
percall:(第二个percall)即函数运行一次的平均时间,等于 cumtime/ncalls;
filename:lineno(function):每个函数调用的具体信息;
需要注意的是cProfile很难搞清楚函数内的每一行发生了什么,是针对整个函数来说的。
-o profile.stats
我们可与你通过这个函数将结果输出到一个文件中,当然文件的后缀名是任意的,这里为了方便后面配合python中使用所以将后缀定为stats。
首先让我们运行下面的命令
python3 -m cProfile -o loopdemo_profile.stats loopdemo.py
然后运行下面的脚本
import pstats
p=pstats.Stats("loopdemo_profile.stats")
p.sort_stats("cumulative")
p.print_stats()
p.print_callers() # 可以显示函数被哪些函数调用
p.print_callees() # 可以显示哪个函数调用了哪些函数
可以看到输出了和之前控制台一样的结果
2006 function calls in 0.005 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.005 0.005 {built-in method builtins.exec}
1 0.000 0.000 0.005 0.005 loopdemo.py:7(<module>)
1001 0.004 0.000 0.004 0.000 {built-in method builtins.print}
1002 0.000 0.000 0.000 0.000 loopdemo.py:30(foo2)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Ordered by: cumulative time
Function was called by...
ncalls tottime cumtime
{built-in method builtins.exec} <-
loopdemo.py:7(<module>) <- 1 0.000 0.005 {built-in method builtins.exec}
{built-in method builtins.print} <- 1001 0.004 0.004 loopdemo.py:7(<module>)
loopdemo.py:30(foo2) <- 1002 0.000 0.000 loopdemo.py:7(<module>)
{method 'disable' of '_lsprof.Profiler' objects} <-
Ordered by: cumulative time
Function called...
ncalls tottime cumtime
{built-in method builtins.exec} -> 1 0.000 0.005 loopdemo.py:7(<module>)
loopdemo.py:7(<module>) -> 1002 0.000 0.000 loopdemo.py:30(foo2)
1001 0.004 0.004 {built-in method builtins.print}
{built-in method builtins.print} ->
loopdemo.py:30(foo2) ->
{method 'disable' of '_lsprof.Profiler' objects} ->
line_profiler
安装
pip3 install Cpython
pip3 install Cython git+https://github.com/rkern/line_profiler.git
python性能分析之cProfile模块的更多相关文章
- python性能分析之line_profiler模块
line_profiler使用装饰器(@profile)标记需要调试的函数.用kernprof.py脚本运行代码,被选函数每一行花费的cpu时间以及其他信息就会被记录下来. 安装 pip3 insta ...
- Python性能分析
Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/33 ...
- 如何进行 Python性能分析,你才能如鱼得水?
[编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 9 ...
- Python性能分析工具Profile
Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 ...
- python性能分析(一)——使用timeit给你的程序打个表吧
前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了) ...
- Python性能分析与优化PDF高清完整版免费下载|百度云盘
百度云盘|Python性能分析与优化PDF高清完整版免费下载 提取码:ubjt 内容简介 全面掌握Python代码性能分析和优化方法,消除性能瓶颈,迅速改善程序性能! 对于Python程序员来说,仅仅 ...
- python性能分析--cProfile
Python标准库中提供了三种用来分析程序性能的模块,分别是cProfile, profile和hotshot,另外还有一个辅助模块stats.这些模块提供了对Python程序的确定性分析功能,同时也 ...
- Python丨Python 性能分析大全
虽然运行速度慢是 Python 与生俱来的特点,大多数时候我们用 Python 就意味着放弃对性能的追求.但是,就算是用纯 Python 完成同一个任务,老手写出来的代码可能会比菜鸟写的代码块几倍,甚 ...
- Python 性能分析工具简介
Table of Contents 1. 性能分析和调优工具简介 1.1. Context Manager 1.2. Decorator 1.3. 系统自带的time命令 1.4. python ti ...
随机推荐
- mysql的使用
数据库操作: 1)创建数据库和删除数据库 使用普通用户,你可能需要特定的权限来创建或者删除 MySQL 数据库,root用户拥有最高权限,可以使用 mysqladmin 命令来创建数据库: mysql ...
- JavaSE_坚持读源码_ClassLoader对象_Java1.7
ClassLoader java.lang public abstract class ClassLoader extends Object //类加载器的责任就是加载类,说了跟没说一样 A clas ...
- 网络设备监控-Catic添加H3C的监控图解
网络设备监控-Catic添加H3C的监控图解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 首先,我要声明满足2个条件才能作本篇笔记的操作:第一:你得有台cacti服务器,第二 ...
- linux crontab定时任务不执行
如crontab 没有成功,检测crontab 服务是否启动, /etc/init.d/crond status 查看crond状态 /etc/init.d/crond restart 重启crond ...
- 1.单件模式(Singleton Pattern)
创建型模式---单件模式(Singleton Pattern)动机(Motivation): 在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性. ...
- Oracle优化学习
SQL执行效率对系统使用有很大影响,本文总结平时排查问题中遇到的一些Oracle优化问题的解决方案,或者日常学习所得. 1. Oracle sql执行顺序 sql语法的分析是从右到左. 1.1 SQL ...
- PostMan打不开怎么解决
如题: 解决办法: 1.找到以下两个路径直接删除文件,注安装路径不同有可能不同 C:\Users\Administrator\AppData\Roaming\Postman C:\Users\Admi ...
- SQL Server2012安装流程
今天手比较抽风,把原来的SQL Server给卸载了,卸载还卸了半天,真是…… 安装时找了好多教程,结果都不是很详细,然后准备自己摸索一下,把这个过程记录下来,供大家参考,如果有不当的地方,欢迎指正, ...
- Spark源码剖析 - SparkContext的初始化(八)_初始化管理器BlockManager
8.初始化管理器BlockManager 无论是Spark的初始化阶段还是任务提交.执行阶段,始终离不开存储体系.Spark为了避免Hadoop读写磁盘的I/O操作成为性能瓶颈,优先将配置信息.计算结 ...
- python -- leetcode 刷题之路
第一题 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], tar ...