Flink 开发环境
通常来讲,任何一门大数据框架在实际生产环境中都是以集群的形式运行,而我们调试代码大多数会在本地搭建一个模板工程,Flink 也不例外。

Flink 一个以 Java 及 Scala 作为开发语言的开源大数据项目,通常我们推荐使用 Java 来作为开发语言,Maven 作为编译和包管理工具进行项目构建和编译。对于大多数开发者而言,JDK、Maven 和 Git 这三个开发工具是必不可少的。

关于 JDK、Maven 和 Git 的安装建议如下表所示:

工程创建
一般来说,我们在通过 IDE 创建工程,可以自己新建工程,添加 Maven 依赖,或者直接用 mvn 命令创建应用:

mvn   archetype:generate  \
        -DarchetypeGroupId=org.apache.flink \
        -DarchetypeArtifactId=flink-quickstart-java \
        -DarchetypeVersion=1.10.0

这里需要的主要的是,自动生成的项目 pom.xml 文件中对于 Flink 的依赖注释掉 scope:

<dependency>
   <groupId>org.apache.flink</groupId>
   <artifactId>flink-java</artifactId>
   <version>${flink.version}</version>
   <!--<scope>provided</scope>-->
</dependency>
<dependency>
   <groupId>org.apache.flink</groupId>
   <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
   <version>${flink.version}</version>
   <!--<scope>provided</scope>-->
</dependency>

DataSet WordCount (批处理)
WordCount 程序是大数据处理框架的入门程序,俗称“单词计数”。用来统计一段文字每个单词的出现次数,该程序主要分为两个部分:一部分是将文字拆分成单词;另一部分是单词进行分组计数并打印输出结果。

    public static void main(String[] args) throws Exception {

      // 创建Flink运行的上下文环境
      final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();       // 创建DataSet,这里我们的输入是一行一行的文本
      DataSet<String> text = env.fromElements(
            "Flink Spark Storm",
            "Flink Flink Flink",
            "Spark Spark Spark",
            "Storm Storm Storm"
      );
      // 通过Flink内置的转换函数进行计算
      DataSet<Tuple2<String, Integer>> counts =
            text.flatMap(new LineSplitter())
                  .groupBy(0)
                  .sum(1);
      //结果打印
      counts.printToErr();    }    public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {       @Override
      public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
         // 将文本分割
         String[] tokens = value.toLowerCase().split("\\W+");          for (String token : tokens) {
            if (token.length() > 0) {
               out.collect(new Tuple2<String, Integer>(token, 1));
            }
         }
      }
    }

实现的整个过程中分为以下几个步骤。

首先,我们需要创建 Flink 的上下文运行环境:

复制ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
然后,使用 fromElements 函数创建一个 DataSet 对象,该对象中包含了我们的输入,使用 FlatMap、GroupBy、SUM 函数进行转换。

最后,直接在控制台打印输出。

我们可以直接右键运行一下 main 方法,在控制台会出现我们打印的计算结果:

 

DataStream WordCount (流处理)
为了模仿一个流式计算环境,我们选择监听一个本地的 Socket 端口,并且使用 Flink 中的滚动窗口,每 5 秒打印一次计算结果。代码如下:

public class StreamingJob {

    public static void main(String[] args) throws Exception {

        // 创建Flink的流式计算环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();         // 监听本地9000端口
        DataStream<String> text = env.socketTextStream("127.0.0.1", 9000, "\n");         // 将接收的数据进行拆分,分组,窗口计算并且进行聚合输出
        DataStream<WordWithCount> windowCounts = text
                .flatMap(new FlatMapFunction<String, WordWithCount>() {
                    @Override
                    public void flatMap(String value, Collector<WordWithCount> out) {
                        for (String word : value.split("\\s")) {
                            out.collect(new WordWithCount(word, 1L));
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .reduce(new ReduceFunction<WordWithCount>() {
                    @Override
                    public WordWithCount reduce(WordWithCount a, WordWithCount b) {
                        return new WordWithCount(a.word, a.count + b.count);
                    }
                });         // 打印结果
        windowCounts.print().setParallelism(1);         env.execute("Socket Window WordCount");
    }     // Data type for words with count
    public static class WordWithCount {         public String word;
        public long count;         public WordWithCount() {}         public WordWithCount(String word, long count) {
            this.word = word;
            this.count = count;
        }         @Override
        public String toString() {
            return word + " : " + count;
        }
    }
}

整个流式计算的过程分为以下几步。

首先创建一个流式计算环境:

复制StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
然后进行监听本地 9000 端口,将接收的数据进行拆分、分组、窗口计算并且进行聚合输出。代码中使用了 Flink 的窗口函数,我们在后面的课程中将详细讲解。

我们在本地使用 netcat 命令启动一个端口:

nc -lk 9000
然后直接运行我们的 main 方法:

在 nc 中输入:

$ nc -lk 9000
Flink Flink Flink 
Flink Spark Storm

可以在控制台看到:

Flink : 4
Spark : 1
Storm : 1

Flink学习(三) 批流版本的wordcount JAVA版本的更多相关文章

  1. Flink 是如何统一批流引擎的

    关注公众号:大数据技术派,回复"资料",领取1000G资料. 本文首发于我的个人博客:Flink 是如何统一批流引擎的 2015 年,Flink 的作者就写了 Apache Fli ...

  2. Java版本

    Java版本 Java版本分为J2SE(Java 2 Standard Edition,Java标准版).J2ME(Java 2 Micro Edition,Java微型版本)和J2EE(Java 2 ...

  3. 阿里重磅开源全球首个批流一体机器学习平台Alink,Blink功能已全部贡献至Flink

    11月28日,Flink Forward Asia 2019 在北京国家会议中心召开,阿里在会上发布Flink 1.10版本功能前瞻,同时宣布基于Flink的机器学习算法平台Alink正式开源,这也是 ...

  4. Flink Application Development DataStream API Execution Mode (Batch/Streaming)- Flink应用程序开发DataStream API执行模式(批/流)

    目录 什么时候可以/应该使用BATCH执行模式? 配置BATCH执行模式 执行行为 任务调度和网络随机shuffle 流执行模式 批处理执行模式 状态后端/状态 处理顺序 Event Time/水印( ...

  5. Flink学习笔记-新一代Flink计算引擎

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  6. flink学习笔记-各种Time

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  7. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  8. 最佳实践:Pulsar 为批流处理提供融合存储

    非常荣幸有机会和大家分享一下 Apache Pulsar 怎样为批流处理提供融合的存储.希望今天的分享对做大数据处理的同学能有帮助和启发. 这次分享,主要分为四个部分: 介绍与其他消息系统相比, Ap ...

  9. flink学习笔记-快速生成Flink项目

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  10. Flink学习(一)

    Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为 ...

随机推荐

  1. 依赖注入在 dotnet core 中实现与使用:5. 使用支持 Unicode 的 HtmlEncoder

    现象 在 ASP.NET Core MVC 中,当在页面中传递了一个包含中文字符串到页面的时候,页面的显示是正常的,但是如果查看页面源码,却看不到中文,变成了一串编码之后的内容. 例如,在页面中直接定 ...

  2. 龙哥量化:通达信分时均线在5分钟K线图上显示

    代写技术指标.量化策略,微信:Long622889 龙哥QQ:591438821 T1:=DAY<>REF(DAY,1);T2:=BARSLAST(T1)+1;JX:SUM(AMO,T2) ...

  3. Qt/C++音视频开发60-坐标拾取/按下鼠标获取矩形区域/转换到视频源真实坐标

    一.前言 通过在通道画面上拾取鼠标按下的坐标,然后鼠标移动,直到松开,根据松开的坐标和按下的坐标,绘制一个矩形区域,作为热点或者需要电子放大的区域,拿到这个坐标区域,用途非常多,可以直接将区域中的画面 ...

  4. Qt开源作品36-程序守护进程

    一.前言 没有任何人敢保证自己写的程序没有任何BUG,尤其是在商业项目中,程序量越大,复杂度越高,出错的概率越大,尤其是现场环境千差万别,和当初本地电脑测试环境很可能不一样,有很多特殊情况没有考虑到, ...

  5. C#中使用泛型对象(List<T>)对xml文件中的重复节点进行的序列化和反序列化

    本文描述将对象(List<T>)序列化到 XML 文档中和从 XML 文档中反序列化为对象(List<T>). 命名空间: System.Xml.Serialization 程 ...

  6. springboot~多节点应用里的雪花算法唯一性

    雪花算法的唯一性,在单个节点中是可以保证的,对应kubernetes中的应用,如果是横向扩展后,进行多副本的情况下,可能出现重复的ID,这需要我们按着pod_name进行一个workId的生成,我还是 ...

  7. RAG实践 - AI 知识库问答功能的建设

    最近在工作中构建了一套自动的基于文档中心为数据集构建知识库 AI 问答的系统,来提升用户体验和技术支持效率,分享一下在实现过程中的技术选型和架构设计. 背景 先说下背景,我们公司的产品 FinClip ...

  8. 多云架构,JuiceFS 如何实现一致性与低延迟的数据分发

    随着大模型的普及,GPU 算力成为稀缺资源,单一数据中心或云区域的 GPU 资源常常难以满足用户的全面需求.同时,跨地域团队的协作需求也推动了企业在不同云平台之间调度数据和计算任务.多云架构正逐渐成为 ...

  9. neo4j-图数据库

    neo4j是图数据库 初识neo4j,首先我们要知道neo4j是图数据库.我们平常用的数据库一般是RDBMS(关系型数据库),那么什么是图数据库呢?既然有了关系型数据库,那么为什么要有图数据库呢? 1 ...

  10. 2025高级java面试精华及复习方向总结

    1. Java基础 顶顶顶顶的点点滴滴 1.1 java集合关系结构图 1.2 如何保证ArrayList的线程安全 方法一: 使用 Collections 工具类中的 synchronizedLis ...