[megatron代码阅读] 1. 初始化和组网
以pretrain_gpt.py
为例, 看megatron的整体逻辑. 本章主要包括megatron初始化相关逻辑, 核心函数为initialize_megatron
, setup_model_and_optimizer
两个
initialize_megatron
parse_args
从argparse中直接读取超参数配置. 如学习率, 正则化等. 从环境变量中获取rank等
load_args_from_checkpoint
优先从未被持久化的ckpt加载, 并且只加载rank0的args
_load_non_persistent_base_checkpoint
find_checkpoint_rank_0
在不知道是否使用pp/ep策略的情况下, 尝试拼装出rank0 ckpt的名称, 如果存在就能定位到实际的存放目录
verify_checkpoint_and_load_strategy
根据是zarr还是 torch_dist选择不同的加载策略
TorchCommonLoadStrategy->torch.load()
如果没有非持久化的, 加载远端ckpt
从ckpt里的args替换掉之前解析的部分args, 比如tp/pp/vp等超参数
校验yaml/args, 全局变量设置
_initialize_distributed
pytorch里的get_world_size 返回的是gpu总卡数
初始化torch.distributed
mpu.initialize_model_parallel (并行设置,核心函数)
RankGenerator
:
- 在每块GPU上启动一个进程(process),每个进程独立执行自己所维护的那部分模型的计算,实现并行训练
- 存储tp/pp/dp/ep/cp 各种并行度配置大小. 并且能够从 tp-dp str格式的并行配置里获取 tp/dp对应的mask和并行度大小设置.
get_ranks
: 根据parallel_size和mask, 计算各种并行策略拆分后的rank group.
[!NOTE]
举例: 假定有2个8卡机器,node1: rank 0-7,node2: rank 8-15 tp-pp-dp: [2,4,2]
- _TENSOR_MODEL_PARALLEL_GROUP :[g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]。
- _PIPELINE_MODEL_PARALLEL_GROUP : [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]。
- _MODEL_PARALLEL_GROUP :tp-pp = 2 * 4 = 8 [0, 1, 4, 5, 8, 9, 12, 13],[2, 3, 6, 7, 10, 11, 14, 15]
- _DATA_PARALLEL_GROUP :[g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]。
注意在PP内输入层和输出层共享一个word_embedding,PP组中的第一个和最后一个rank需要通讯,保证word_embedding完全一致
group全局变量赋值: 每个并行模式有一个分组全局变量.通过 generator_wrapper生成, 自己的进程rank如果在group内, 初始化对应的nccl/gloo torch.distributed.new_group
GlobalMemoryBuffer: 保存每个已经分配出的tensor, 避免显存重分配.
setup_model_and_optimizer
主要逻辑是配置模型组网和优化器.
model_provider: torch gpt组网
megatron/core/transformer
, transformer组网核心逻辑, 基于torch.nn.Module, 将涉及到的子模型结构进行了抽象. 通过subModule的方式嵌入自定义module, 便于代码复用
例如
self_attention=ModuleSpec(
module=SelfAttention,
params={"attn_mask_type": attn_mask_type},
submodules=SelfAttentionSubmodules(
linear_qkv=ColumnParallelLinear,
core_attention=DotProductAttention,
linear_proj=RowParallelLinear,
q_layernorm=IdentityOp,
k_layernorm=IdentityOp,
),
)
在attention.py
里读到之前moduleSpec中的对应linear_qkv的实现, 即TP列并行的Linear实现. 加上TransformerConfig, 就能定义出最终的网络逻辑. TP相关逻辑在后续专门看的时候再细写.
self.linear_qkv = build_module(
submodules.linear_qkv,
self.config.hidden_size,
self.query_projection_size + 2 * self.kv_projection_size,
config=self.config,
init_method=self.config.init_method,
gather_output=False,
bias=self.config.add_bias_linear or self.config.add_qkv_bias,
skip_bias_add=False,
is_expert=False,
tp_comm_buffer_name='qkv',
)
torch里实现module时, 主要关注__init__()
和forward()
, bp通过自动微分生成.
配置
配置类 ModelParallelConfig, TransformerConfig
ModelParallelConfig: 主要包括 模型并行/PP/通信overlap相关优化开关/cpuOffload 等相关配置
TransformerConfig: 主要包括 模型结构/MOE/算子fusion加速/激活重计算/Context并行 等配置
models/gpt/gpt_model.py
preprocess
分为word_emb和pos_emb两部分. 输出为 word_emb(b,s,h) + pos_emb(s,h) + tokentype_emb(b,s,h)(需要转置适配)
注意在embedding最后要进行dropout处理, 应该是为了减少模型过拟合的风险
WordEmbeddings
tensor_parallel.VocabParallelEmbedding
vocab_size表示词表维度, 例如分词预处理后保留能查到的几千个常用单词. 将vocab_size个embed均分存储到global_world_size张卡上, embedding lookup时从对应的存储卡上拉取. 这里把非自身rank的emb通过[start_idx, end_idx)的mask操作置0, 然后通过reduce就能获取完整的词表.
如果配置开了序列并行, reduce操作会变为reduceScatter操作, lookup之后直接分配好sp的输入.
RoPE(旋转位置编码)
位置编码需要满足几个性质: 1. 不能满足交换律, 第m个token与第n个token的位置关系,和第n个token与第m个token的位置关系一定要有区分度。 2.需要有远程衰减性
为了便于加速计算, 可以等价优化为下面这种向量乘法的形式:
tokentype_embedding
类型嵌入层,用于区分输入中不同类型的token, 例如,在BERT中用于区分两个句子,而在某些GPT变种或特定任务中可能用于区分不同类型的输入数据,如对话中的提问和回答.
transformer
self.decoder就是上面通过ModuleSpec获得的module, 可以根据配置选择普通的selfAttention, 还是MLA.
- MLA原理: 在模型能力不变基础上,通过KV低秩压缩, 使得推理的KVcache显存占用和计算效率上对比MHA性能有明显提升.
postprocess
1.output_layer & loss
训练时output可以并行, 这里是个TP列并行的方式, 训练方式如下例子:
<s>
<s> i
<s> i love
<s> i love maching
<s> i love maching learning <eos/>
训练阶段将这个矩阵直接输入到decoder,分别得到 5个输出 \(O_i, i\in [1,2,3,4,5]\), 理想的输出应该是[i, love, maching, learning, ] ,然后 比较\(O_i\)和理想输出的交叉熵,得到loss. 而且这五个序列可以放在一个batch内并行计算.
optimizer
_get_param_groups_and_buffers
从多个model_chunks中遍历所有的param向量, 对其中某些param进行特殊的处理
- decoupled_lr是为input/output layer单独设置的lr
no_weight_decay_cond
: 配置参数是否应该执行权重衰减。- scale_lr_cond: 对某些指定层的参数进行学习率缩放, 匹配到对应的param_map后执行.
_get_megatron_optimizer_based_on_param_groups
主要逻辑是混合精度optimizer的设置(MixedPrecisionOptimizer), TODO: 细看Apex.FusedAdam, 和torch.adamW
的区别在哪里
梯度缩放: DynamicGradScaler
混合精度训练的时候, 用于动态调整梯度缩放比例,以处理梯度爆炸或消失问题.
主要逻辑是有一个初始化scale值, 当连续hysteresis
次迭代中出现NaN,torch.max(scale * backoff_factor, min_scale) 用来减小scale\(backoff\_factor \in (0, 1)\).
当连续growth_interval次没出现NaN, 按照_scale * growth_factor_, 放大scale, \(growth\_factor > 1\)
DistributedOptimizer
接口继承自torch.optimizer, 核心逻辑在step(self)
, 有3个类: FP32Optimizer, ChainedOptimizer, MixedPrecisionOptimizer
FP32Optimizer: fp32训练使用到的, 主要功能是配置了clip_grad后进行normalization, norm分两种, 一种是取max_grad, 一种是l2范数, 通过all_reduce拿到total_norm, 最后用这个值分别对每个param tensor进行scale. 在scale之后就调用的是torch.optimizer.step进行正常的Adam更新.
MixedPrecisionOptimizer: 混合精度训练使用
- prepare_grads: 先从param.grad copy到 param.main_grad, 这一步同时做了fp16->fp32的转换, 然后检查所有的grad, 先unscale, 再看是否存在NaN. 注意只有fp16需要, bf16不需要.
- clip_grad_norm: 与FP32Optimizer一样的方法scale grad.
- step_with_ready_grads: optimizer.step后, 再把fp32的main_param copy回用于下一轮bp的fp16 param里面.
ChainedOptimizer: 用于moe场景, 每个分块子模型配置不同的optimizer时使用. 多个optimizer之间串行执行.
下一节看megatron的模型保存&加载, 并行训练相关代码.
参考链接
[megatron代码阅读] 1. 初始化和组网的更多相关文章
- [置顶] Linux协议栈代码阅读笔记(一)
Linux协议栈代码阅读笔记(一) (基于linux-2.6.21.7) (一)用户态通过诸如下面的C库函数访问协议栈服务 int socket(int domain, int type, int p ...
- Python - 关于代码阅读的一些建议
初始能力 让阅读思路保持清晰连贯,主力关注在流程架构和逻辑实现上,不被语法.技巧和业务流程等频繁地阻碍和打断. 建议基本满足以下条件,再开始进行代码阅读: 具备一定的语言基础:熟悉基础语法,常用的函数 ...
- Bleve代码阅读(二)——Index Mapping
引言 Bleve是Golang实现的一个全文检索库,类似Lucene之于Java.在这里通过阅读其代码,来学习如何使用及定制检索功能.也是为了通过阅读代码,学习在具体环境下Golang的一些使用方式. ...
- 脚本病毒分析扫描专题2-Powershell代码阅读扫盲
4.2.PowerShell 为了保障木马样本的体积很小利于传播.攻击者会借助宏->WMI->Powershell的方式下载可执行文件恶意代码.最近也经常会遇见利用Powershell通过 ...
- Jafka Broker代码阅读之总览
从本文开始,笔者将尝试从源码角度解读Jafka(Kafka)的特性,探究其背后的实现原理与技术.前面讲解Jafka Broker的文章中有提到下面这段启动服务端的代码,我们就从这里开始. Proper ...
- vnpy源码阅读学习(5):关于MainEngine的代码阅读
关于MainEngine的代码阅读 在入口文件中,我们看到了除了窗体界面的产生,还有关于MainEngine和EventEngin部分.今天来学习下MainEngine的代码. 首先在run代码中,我 ...
- 软光栅-uraster代码阅读(入门极品)
软光栅-uraster代码阅读(入门极品) 代码链接:https://github.com/Steve132/uraster 所有的代码都在uraster.hpp中.代码非常简单,适合初学者学习软光栅 ...
- Python代码阅读(第12篇):初始化二维数组
Python 代码阅读合集介绍:为什么不推荐Python初学者直接看项目源码 本篇阅读的代码实现了二维数组的初始化功能,根据给定的宽高初始化二维数组. 本篇阅读的代码片段来自于30-seconds-o ...
- Linux Kernel代码艺术——数组初始化
前几天看内核中系统调用代码,在系统调用向量表初始化中,有下面这段代码写的让我有点摸不着头脑: const sys_call_ptr_t sys_call_table[__NR_syscall_max+ ...
- 代码阅读分析工具Understand 2.0试用
Understand 2.0是一款源代码阅读分析软件,功能强大.试用过一段时间后,感觉相当不错,确实可以大大提高代码阅读效率.由于Understand功能十分强大,本文不可能详尽地介绍它的所有功能,所 ...
随机推荐
- mysql重置id排列重新排序
1.删除表中的原有的主键字段 ALTER TABLE table2 DROP id 2.表中重新创建一个字段 ALTER TABLE table2 ADD id int NOT NULL FIRST; ...
- 2024强网杯pwn short wp
这时2024强网杯的pwn部分的short的WP 分析以下程序的基本安全措施 *] '/home/ysly/solve/tmp/short' Arch: i386-32-little RELRO: P ...
- Webstorm 2024 安装使用 (附加永久激活码、补丁)
下载安装 第二步,安装完成之后,下载补丁 下载地址(里面包含激活码) 完成,之后输入激活码 免责声明:本文中的资源均来自互联网,仅供个人学习和交流使用,严禁用于商业行为,下载后请在24小时内从电脑中彻 ...
- 文件上传日志包含详解与CTF实战
1. 日志简介 1.1 日志介绍 日志是记录系统或应用程序运行时事件的文件.这些记录可以包括错误信息.用户活动.系统性能指标等,帮助开发者和管理员监控和排查问题. 日志通常会记录多种内容,包括: 时间 ...
- OSG开发笔记(三十一):OSG中LOD层次细节模型介绍和使用
前言 模型较大的时候,出现卡顿,那么使用LOD(细节层次)进行层次细节调整,可以让原本卡顿的模型变得不卡顿. 本就是LOD介绍. Demo LOD 概述 LOD也称为层次细节模 ...
- 查看一个package是否在执行
select a.type, a.owner, b.SID, b.SERIAL#, b.OSUSER, b.MACHINE, b.PROGRAM, b.MODULE, b.ACTION From db ...
- Slate文档编辑器-WrapNode数据结构与操作变换
Slate文档编辑器-WrapNode数据结构与操作变换 在之前我们聊到了一些关于slate富文本引擎的基本概念,并且对基于slate实现文档编辑器的一些插件化能力设计.类型拓展.具体方案等作了探讨, ...
- 【THUPC 2024 初赛】 E 转化
[THUPC 2024 初赛] 转化 我都能做出来,那就是大水题了. 思路 首先我们要确定最大可以变色的球的数量 \(tot\). 有如下两个贪心步骤: 所有颜色使用分裂操作,并更新 \(a_i\). ...
- el-upload上传文件 需要在请求之前加一个校验文件内容格式请求
before-upload data(){ return { ... //判断是否需要做文件检查 checkFileFormat:false } }, beforeUpload(rawFile) { ...
- Socket Tcp高密集信息广播转发强度测试
在有些场中存在着大量的消息广播转发,为了了解.net socket tcp在这方面的性能表现,所以做了一个比较极端信息广播转发强度测试.测试场景是以400个连接信息相互广播为测试用例就是当其中一个连接 ...