POJ 1850 Code 字符串 难度:1
题意:
1 如果是严格升序的字母字符串,那么可以输出非0解码,否则不能译码输出0
2 字符串解码 遵循递增原则,其值为 到现在为止的所有按字母序小于该字符串的数量 + 1;
#include <iostream> using namespace std;
char ans[11];
int a[10];
int c[27][27];
long long f[10];
void generc(){//生成组合数
for(int i=1;i<27;i++)c[i][0]=c[i][i]=1;
for(int i=2;i<27;i++){
for(int j=1;j<27;j++){
c[i][j]=c[i-1][j]+c[i-1][j-1];
}
}
}
void generf(){//如果字符串长度为len ,首先统计长度小于len的所有严格升序字符串个数
f[0]=0;
for(int i=1;i<10;i++){
f[i]=f[i-1]+c[26][i];//长度为i 的 字符串中会出现所有字母,且不重复取到i个后有唯一顺序
}
} long long calc(){
int len=0;//记录长度,不想用cstring
for(len=0;len<10;len++){
if(ans[len]==0)break;
a[len]=ans[len]-'a';//习惯处理数字,无关紧要
} int former=0;//记录前一位的值+1,该值将作为下一位所有可能的起点,因为是首位,设存在a[-1]=-1;所以a[0]从0('a')开始
long long res=0;//记录答案
res+=f[len-1];//记录所有长度小于len的严格升序字母字符串
for(int i=0;i<len;i++){//记录所有第i位按字母序小于a[i]的字符串
for(int j=former;j<a[i];j++){//
res+=c[25-j][len-1-i];//25-j 可用字母数量 len-1-i 还未确定的字母个数 由于题意保证,不需要加条件判断正确性
}
former=a[i]+1;
}
return res+1;//只记录了比自己小的字符串所以+1
}
bool check(){//检验是否严格升序,没看清题意忘了检验,wa第一次
int fl=true;
int len=0;
char former='a'-1;
for(len=0;len<10;len++){
if(ans[len]==0)break;
if(ans[len]<=former){
fl=false;
break;
}
former=ans[len];
}
if(len==0)return false;//无关紧要
return fl;
}
int main(){
generc();
generf();
cin>>ans;//只有一组数据,wa第二次
if(check())cout<<calc()<<endl;
else cout<<0<<endl;
return 0; }
这道题虽然水,但反映了我不读题意的问题,我写的也不好,接下来去找大神题解去
解法2 看了题解后的新想法,dp,但是悲哀的是忘了former的存在//16ms
#include <iostream>
using namespace std;
char ans[11];
int a[10];
int len;
long long memo[11][27];//memo[i][j] i 当前长度 j 以何种字母开头 (j=26相当于所有字母皆可的'X')
//memo[i][j] 长度<i && 字典序 小于j 的所有严格升序字符串
void setmemo(){
//memo[1][0]=0;//a前面没有 符合条件的字符串
for(int i=1;i<27;i++)memo[1][i]=memo[1][i-1]+1;
for(int i=2;i<11;i++){
//memo[i][0]=0;
for(int j=1;j<26;j++){
memo[i][j]=memo[i][j-1]+memo[i-1][26]-memo[i-1][j];//所有可能减去小于j的可能
}
memo[i][26]=memo[i][25];//任何长度>1的字符串首位必然不是z
}
}
long long calc(){
long long ans=0; for(int i=0;i<len;i++){
ans+=memo[len-i][a[i]];
if(i)ans-=memo[len-i][a[i-1]+1];
ans+=memo[i][26];
}
return ans+1;
}
bool check(){
bool fl=true;
char former='a'-1;
for(len=0;len<10;len++){
if(ans[len]==0)break;
if(ans[len]<=former){
fl=false;
break;
}
a[len]=ans[len]-'a';
former=ans[len];
}
if(len==0)return false;
return fl;
}
int main(){
setmemo();
while(cin>>ans){
if(check())cout<<calc()<<endl;
else cout<<0<<endl;}
return 0;
}
POJ 1850 Code 字符串 难度:1的更多相关文章
- POJ 1850 Code(组合数)
http://poj.org/problem?id=1850 题意 :给定字符串,系统是用字符串组成的,字符串是按字典序排的.编码系统有三条规则,1这些的单词的长度是由小到大的,2相同长度的按字母在字 ...
- POJ 1850 Code
组合数学.... Code Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7202 Accepted: 3361 Descrip ...
- poj 1850 code(组合数学)
题目:http://poj.org/problem?id=1850 题意:按给定的规则给字母编号. 一个很简单的题目,但是却做了好久.................................. ...
- POJ 1850 Code(找规律)
Code Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7913 Accepted: 3709 Description ...
- POJ - 1850 Code(组合数学)
https://vjudge.net/problem/POJ-1850 题意 输出某字符串在字典中的位置.字符串不合规则时输出0. 分析 首先判断字符串合法性,也就是判断是不是升序排列的.如果符合,以 ...
- poj:1850 Code(组合数学?数位dp!)
题目大意:字符的字典序依次递增才是合法的字符串,将字符串依次标号如:a-1 b-2 ... z-26 ab-27 bc-52. 为什么题解都是组合数学的...我觉得数位dp很好写啊(逃 f[pos][ ...
- 【POJ 1850】 Code
[POJ 1850] Code 还是非常想说 数位dp真的非常方便! !. 数位dp真的非常方便!.! 数位dp真的非常方便! !! 重要的事说三遍 该题转换规则跟进制差点儿相同 到z时进一位 如az ...
- POJ 1496 POJ 1850 组合计数
Code Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8256 Accepted: 3906 Description Tran ...
- POJ 1159 Palindrome(字符串变回文:LCS)
POJ 1159 Palindrome(字符串变回文:LCS) id=1159">http://poj.org/problem? id=1159 题意: 给你一个字符串, 问你做少须要 ...
随机推荐
- mysql 查询开销
1.select @@profiling;2.set @@session.profiling=on;3.show profiles;4.show profile for query 2;
- 使用连接来代替in和not in(使用外连接技巧)
比如:表A里面的一个字段叫做MOBILE 里面存的记录如下 : 123456781 表B里面的一个字段也叫做MOBILE里面存的记录如下 12341910 (1)我们要查询一下A和B里面都有的,以 ...
- 关于boost的thread的mutex与lock的问题
妈的,看了好久的相关的知识,感觉终于自己有点明白了,我一定要记下来啊,相关的知识呀.... 1, 也可以看一下boost的线程指南:http://wenku.baidu.com/link?url=E_ ...
- Traffic Sign Recognition with Multi-Scale Convolutional Networks
总结一下文中几点值得学习的地方: 1,卷积神经网络的结构图:Multi-Scale Features. 因为它提取的特征的分层的,对吧,虽然最后 一层可以提供全局信息,但是呢,前面的几层可以提供更 ...
- [css]【转载】CSS样式分离之再分离
原文链接:http://www.zhangxinxu.com/wordpress/2010/07/css%E6%A0%B7%E5%BC%8F%E5%88%86%E7%A6%BB%E4%B9%8B%E5 ...
- 【CDN】海外免费加速CDN:Incapsula,CloudFare
最近服务器要搬迁到香港,因为后续有国外用户使用,基于此要使用大陆和海外都比较好的cdn才好 一开始国外同事推荐CloudFare,后来看看效果开始使用Incapsula CloudFare 官网:ht ...
- 转载 - LINUX下查看CPU使用率的命令
几个常用的命令,一些不错的解释 http://blog.csdn.net/wengpingbo/article/details/6302058 1.top 使用权限:所有使用者 使用方式:top [- ...
- XMLHttpRequest cannot load – Origin is not allowed by Access-Control-Allow-Origin.
报错:跨域 XMLHttpRequest cannot load http://localhost:8080/yxt-admin/admin/store. No 'Access-Control-Al ...
- WCF配置详解
前面一篇文章<WCF 学习总结1 -- 简单实例> 一股脑儿展示了几种WCF部署方式,其中配置文件(App.config/Web.config)都是IDE自动生成,省去了我们不少功夫.现在 ...
- Sqlserver_时间用法
函数 描述 GETDATE() 返回当前的日期和时间 DATEPART() 返回日期/时间的单独部分 DATEADD() 在日期中添加或减去指定的时间间隔 DATEDIFF() 返回两个日期之间的时间 ...