d叉堆的实现相对于二叉堆变化不大,首先看它如何用数组表示。

考虑一个索引从1开始的数组,一个结点i最多可以有d个子结点,编号从id - (d - 2) 到 id + 1。

从而可以知道一个结点i的父结点计算方法为: (i + d - 2) / d。

第二个问题是 一个含有n个元素的d叉堆的高度,就是一个简单的等比数列的问题,可以知道的是一颗高度为h的满d叉树所含的结点数目为(d^(h +1) - 1) / (d - 1)

从而一颗含有 n个结点的d叉树满足的条件为:

,从而得到高度h为:

接下来三个小问的实现思路就跟书中的伪码大同小异了,直接附上源码如下:

#include<iostream>
#include<algorithm>
using namespace std;
const int d = 5;
#define PARENT(i) (i + d - 2) / d
#define child(k) -(d - 2) + k - 1
void max_heapify(int A[], int i, int &size){
int largest = i;
for (int k = 1; k <= d; k ++){
int child = i + child(k);
if (child <= size && A[child] > A[largest])
largest = child;
}
if (largest != i) {
swap(A[i], A[largest]);
max_heapify(A, largest, size);
}
}
int heap_extract_max(int A[], int &size){
if (size < 1)
return -1;
int max = A[1];
A[1] = A[size];
size--;
max_heapify(A, 1, size);
return max;
}
void heap_increase_key(int A[], int i, int key){
if (key <= A[i]) return;
A[i] = key;
while (i > 1 && A[PARENT(i)] < A[i]){
swap(A[i], A[PARENT(i)]);
i = PARENT(i);
}
}
void max_heap_insert(int A[], int &size, int key){
size++;
A[size] = INT_MIN;
heap_increase_key(A, size, key);
}

  

算法导论 第六章 思考题 6-3 d叉堆的更多相关文章

  1. 算法导论 第六章 思考题6-3 Young氏矩阵

    这题利用二叉堆维持堆性质的办法来维持Young氏矩阵的性质,题目提示中写得很清楚,不过确实容易转不过弯来. a,b两问很简单.直接看c小问: 按照Young氏矩阵的性质,最小值肯定在左上角取得,问题在 ...

  2. 算法导论 第六章 堆排序(python)

    6.1堆 卫星数据:一个带排序的的数通常是有一个称为记录的数据集组成的,每一个记录有一个关键字key,记录的其他数据称为卫星数据. 原地排序:在排序输入数组时,只有常数个元素被存放到数组以外的空间中去 ...

  3. 算法导论 第六章 2 优先队列(python)

    优先队列:     物理结构: 顺序表(典型的是数组){python用到list}     逻辑结构:似完全二叉树 使用的特点是:动态的排序..排序的元素会增加,减少#和快速排序对比 快速一次排完 增 ...

  4. 《算法导论》第二章demo代码实现(Java版)

    <算法导论>第二章demo代码实现(Java版) 前言 表示晚上心里有些不宁静,所以就写一篇博客,来缓缓.囧 拜读<算法导论>这样的神作,当然要做一些练习啦.除了练习题与思考题 ...

  5. 《算法》第六章部分程序 part 7

    ▶ 书中第六章部分程序,加上自己补充的代码,包括全局最小切分 Stoer-Wagner 算法,最小权值二分图匹配 ● 全局最小切分 Stoer-Wagner 算法 package package01; ...

  6. 《算法》第六章部分程序 part 6

    ▶ 书中第六章部分程序,包括在加上自己补充的代码,包括二分图最大匹配(最小顶点覆盖)的交替路径算法和 HopcroftKarp 算法 ● 二分图最大匹配(最小顶点覆盖)的交替路径算法 package ...

  7. 《算法》第六章部分程序 part 5

    ▶ 书中第六章部分程序,包括在加上自己补充的代码,网络最大流 Ford - Fulkerson 算法,以及用到的流量边类和剩余流量网络类 ● 网络最大流 Ford - Fulkerson 算法 pac ...

  8. 为什么我要放弃javaScript数据结构与算法(第六章)—— 集合

    前面已经学习了数组(列表).栈.队列和链表等顺序数据结构.这一章,我们要学习集合,这是一种不允许值重复的顺序数据结构. 本章可以学习到,如何添加和移除值,如何搜索值是否存在,也可以学习如何进行并集.交 ...

  9. 《算法》第六章部分程序 part 8

    ▶ 书中第六章部分程序,加上自己补充的代码,包括单纯形法求解线性规划问题 ● 单纯形法求解线性规划问题 // 表上作业法,I 为单位阵,y 为对偶变量,z 为目标函数值 // n m 1 // ┌── ...

随机推荐

  1. 024-ActionResult解说

    ActionResult是一个抽象类,是Action运行后的回传类型,但是当Action回传ActionResult的时候,其实并不包含这个ActionResult的运行结果,而是包含运行这个Acti ...

  2. 全面理解面向对象的 JavaScript

    前言 当今 JavaScript 大行其道,各种应用对其依赖日深.web 程序员已逐渐习惯使用各种优秀的 JavaScript 框架快速开发 Web 应用,从而忽略了对原生 JavaScript 的学 ...

  3. 为设计师准备的 20 个新的免费 PSD 模板

    设计师们每天的工作经常要用到各种模板,本文推荐 20 个新的免费 PSD 模板,可节省设计时间. Blueprint Notice PSD Wooden Drawer Icon Minimal Clo ...

  4. [bootstrap] 栅格系统和布局

    1.简介 栅格系统(grid systems),也称为“网格系统”,运用固定的格子设计版面布局,风格工整简洁.是从平面栅格系统演变而来. Bootstrap建立在12列栅格系统.布局.组件之上.以规则 ...

  5. struts 标签库注解

    在struts2中有着一套像html一样的标签,俗称struts2标签,大多数公司使用ssh都是使用html标签,但为了保持项目的统一性,有的公司还是使用的struts2的标签,下面是一些常用的str ...

  6. Hadoop-env.sh[翻译]

    说明: 某天 ,把hadoop-env.sh的注释看了看 , 感觉受益匪浅,于是想要写一篇告诉大家,文档是最靠谱的,鉴于我的水平有限,只能翻译大概,切勿吐槽,提建议请留言 摘要: 1.这个文件中只有J ...

  7. viewDidLoad && loadView

    viewDidLoad 方法在controller加载了相关的views后被调用,而不论这些views存储在nib文件里还是在loadView函数中生成. loadView 方法在控制器的 view ...

  8. 网页html结构右侧栏固定,左侧自适应大小。

    最近写了一个项目,写页面的结构,html树形结构是有header,container,footer部分,其中container部分是右侧栏是固定宽度,左侧是自适应宽度与屏幕高度. 第一次写的博客文章是 ...

  9. Linux中Matlab保存多个数据到同一个文件当中

    % load pyrim % NumTrain = 50; % load machine %NumTrain = 150; % load housing % NumTrain = 300; % loa ...

  10. WIN7下更改TFS连接用户的方法

    如果你在第一用VS连接TFS的时候,当你输入完用户名和密码并点击保存时,你的用户登录信息就保存在Credential Manager. 你可以到 Control Panel->User Acco ...