POJ 1860 Currency Exchange (最短路)
Currency Exchange
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other)
Total Submission(s) : 4 Accepted Submission(s) : 2
For
example, if you want to exchange 100 US Dollars into Russian Rubles at the
exchange point, where the exchange rate is 29.75, and the commission is 0.39 you
will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are
N different currencies you can deal with in our city. Let us assign unique
integer number from 1 to N to each currency. Then each exchange point can be
described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA -
exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some
exchange operations, increase his capital. Of course, he wants to have his money
in currency S in the end. Help him to answer this difficult question. Nick must
always have non-negative sum of money while making his operations.
the number of currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The following M
lines contain 6 numbers each - the description of the corresponding exchange
point - in specified above order. Numbers are separated by one or more spaces.
1<=S<=N<=100, 1<=M<=100, V is real number,
0<=V<=10<sup>3</sup>. <br>For each point exchange rates
and commissions are real, given with at most two digits after the decimal point,
10<sup>-2</sup><=rate<=10<sup>2</sup>,
0<=commission<=10<sup>2</sup>. <br>Let us call some
sequence of the exchange operations simple if no exchange point is used more
than once in this sequence. You may assume that ratio of the numeric values of
the sums at the end and at the beginning of any simple sequence of the exchange
operations will be less than 10<sup>4</sup>. <br>
case output NO to the output file.
题目大意:有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
解题思路:单源最短路径算法,因为题目可能存在负边,所以用Bellman Ford算法,
原始Bellman Ford可以用来求负环,这题需要改进一下用来求正环
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,
求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,
说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。
AC代码:
#include <stdio.h>
#include <string.h>
double dis[];
int n,m,s,ans;
double v;
struct data
{
int x,y;
double r,c;
}num[];
void add(int a,int b,double c,double d)
{
num[ans].x = a;
num[ans].y = b;
num[ans].r = c;
num[ans].c = d;
ans ++;
}
bool Bellman_ford()
{
int i,j;
for (i = ; i <= n; i ++) //此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[i] = ;
dis[s] = v;
bool flag;
for (i = ; i < n; i ++)
{
flag = false; //优化
for (j = ; j < ans; j ++)
if (dis[num[j].y] < (dis[num[j].x]-num[j].c)*num[j].r) //注意是小于号
{
dis[num[j].y] = (dis[num[j].x]-num[j].c)*num[j].r;
flag = true;
}
if (!flag) //如果没有更新,说明不存在正环
return false;
}
for (j = ; j < ans; j ++) //正环能够无限松弛
if (dis[num[j].y] < (dis[num[j].x]-num[j].c)*num[j].r)
return true; //有正环
return false;
}
int main ()
{
int i,j;
int a,b;
double r1,c1,r2,c2;
while (~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
ans = ;
for (i = ; i < m; i ++)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&r1,&c1,&r2,&c2);
add(a,b,r1,c1);
add(b,a,r2,c2);
}
if (Bellman_ford())
printf("YES\n");
else
printf("NO\n");
}
return ;
}
SPFA算法:
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int N = ;
int n, m, s;
double dis[N], v, rate[N][N], cost[N][N]; bool spfa(int start)
{
bool inq[];
memset(inq, , sizeof(inq));
memset(dis, , sizeof(dis));
dis[start] = v;
queue<int> Q;
Q.push(start);
inq[start] = true;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
inq[x] = false;
for(int i = ; i <= n; i++)
{
if(dis[i] < (dis[x] - cost[x][i]) * rate[x][i])
{
dis[i] = (dis[x] - cost[x][i]) * rate[x][i];
if(dis[start] > v)
return true;
if(!inq[i])
{
Q.push(i);
inq[i] = true;
}
}
}
}
return false;
} int main()
{
int i, j;
while(~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
int a, b;
double rab, rba, cab, cba;
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
if(i == j)
rate[i][j] = ;
else
rate[i][j] = ;
cost[i][j] = ;
}
for(i = ; i < m; i++)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&rab,&cab,&rba,&cba);
rate[a][b] = rab;
rate[b][a] = rba;
cost[a][b] = cab;
cost[b][a] = cba;
}
if(spfa(s))
printf("YES\n");
else
printf("NO\n");
}
return ;
}
POJ 1860 Currency Exchange (最短路)的更多相关文章
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)
感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...
- POJ 1860 Currency Exchange 最短路 难度:0
http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】
链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...
随机推荐
- 如何整治那些敢偷用你Wi-Fi的人
我的邻居正在盗用我的WiFi,唔,对此我可以直接选择加密口令,或者…作为一名极客我也可以耍耍他.那么,我就从划分网络开始吧.我把网络划分成两部分,受信任部分和非受信任部分.受信任部分组成一个子网,而非 ...
- ZOJ 3654 Letty's Math Class 模拟 难度:0
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4844 题意:给你一个只包含中括号和正整数,+,-,结果在longlong范围内 ...
- cmd命令行中的errorlevel和延迟赋值
最近用到了命令行,一点心得: 1.errorlevel返回的确实是上一条命令的返回值,但不同命令的表现完全不同.比如: dir echo %errorlevel% //显示0 dir aldkalf ...
- TClientDataSet 设计期 多次New 字段问题
第一次New几个字段后,右键菜单CreateDataSet 后来需要再New几个字段. 右键菜单,先 ClearData(不这样,会报 打开的数据集不能执行 这个New字段的操作),然后在 字段编辑器 ...
- 使用jsTree动态加载节点
因为项目的需要,需要做一个树状菜单,并且节点是动态加载的,也就是只要点击父节点,就会加载该节点下的子节点. 大致的效果实现如下图: 以上的实现就是通过jsTree实现的,一个基于JQuery的树状菜单 ...
- RPI学习--webcam_用fswebcam抓取图片
若 ls /dev 下没有video0,可以参考http://www.cnblogs.com/skynext/p/3644873.html,更新firmware 1,安装fswebcam: sudo ...
- redis——基础介绍
转自:http://www.cnblogs.com/xing901022/p/4863929.html 1 什么是Redis Redis(REmote DIctionary Server,远程数据字典 ...
- App跳转至系统Settings
很多著名和非著名的App有在App内通过某种方式跳转到系统Settings的功能.不论初心和交互,某认为这个功能用的好确实是很方便的,Control Center功能有限,Home键点击起来很累,至于 ...
- Python闭包实现的计数器
#!/usr/bin/env python #coding=utf-8 def generate_counter(): CNT = [0] def add_one(): CNT[0] = CNT[0] ...
- BZOJ 2111 排列计数
f[i]=f[l]*f[r]*C(size[l]+size[r],size[l]). 需要lucas. #include<iostream> #include<cstdio> ...