POJ 1860 Currency Exchange (最短路)
Currency Exchange
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other)
Total Submission(s) : 4 Accepted Submission(s) : 2
For
example, if you want to exchange 100 US Dollars into Russian Rubles at the
exchange point, where the exchange rate is 29.75, and the commission is 0.39 you
will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are
N different currencies you can deal with in our city. Let us assign unique
integer number from 1 to N to each currency. Then each exchange point can be
described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA -
exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some
exchange operations, increase his capital. Of course, he wants to have his money
in currency S in the end. Help him to answer this difficult question. Nick must
always have non-negative sum of money while making his operations.
the number of currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The following M
lines contain 6 numbers each - the description of the corresponding exchange
point - in specified above order. Numbers are separated by one or more spaces.
1<=S<=N<=100, 1<=M<=100, V is real number,
0<=V<=10<sup>3</sup>. <br>For each point exchange rates
and commissions are real, given with at most two digits after the decimal point,
10<sup>-2</sup><=rate<=10<sup>2</sup>,
0<=commission<=10<sup>2</sup>. <br>Let us call some
sequence of the exchange operations simple if no exchange point is used more
than once in this sequence. You may assume that ratio of the numeric values of
the sums at the end and at the beginning of any simple sequence of the exchange
operations will be less than 10<sup>4</sup>. <br>
case output NO to the output file.
题目大意:有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
解题思路:单源最短路径算法,因为题目可能存在负边,所以用Bellman Ford算法,
原始Bellman Ford可以用来求负环,这题需要改进一下用来求正环
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,
求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,
说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。
AC代码:
#include <stdio.h>
#include <string.h>
double dis[];
int n,m,s,ans;
double v;
struct data
{
int x,y;
double r,c;
}num[];
void add(int a,int b,double c,double d)
{
num[ans].x = a;
num[ans].y = b;
num[ans].r = c;
num[ans].c = d;
ans ++;
}
bool Bellman_ford()
{
int i,j;
for (i = ; i <= n; i ++) //此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[i] = ;
dis[s] = v;
bool flag;
for (i = ; i < n; i ++)
{
flag = false; //优化
for (j = ; j < ans; j ++)
if (dis[num[j].y] < (dis[num[j].x]-num[j].c)*num[j].r) //注意是小于号
{
dis[num[j].y] = (dis[num[j].x]-num[j].c)*num[j].r;
flag = true;
}
if (!flag) //如果没有更新,说明不存在正环
return false;
}
for (j = ; j < ans; j ++) //正环能够无限松弛
if (dis[num[j].y] < (dis[num[j].x]-num[j].c)*num[j].r)
return true; //有正环
return false;
}
int main ()
{
int i,j;
int a,b;
double r1,c1,r2,c2;
while (~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
ans = ;
for (i = ; i < m; i ++)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&r1,&c1,&r2,&c2);
add(a,b,r1,c1);
add(b,a,r2,c2);
}
if (Bellman_ford())
printf("YES\n");
else
printf("NO\n");
}
return ;
}
SPFA算法:
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int N = ;
int n, m, s;
double dis[N], v, rate[N][N], cost[N][N]; bool spfa(int start)
{
bool inq[];
memset(inq, , sizeof(inq));
memset(dis, , sizeof(dis));
dis[start] = v;
queue<int> Q;
Q.push(start);
inq[start] = true;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
inq[x] = false;
for(int i = ; i <= n; i++)
{
if(dis[i] < (dis[x] - cost[x][i]) * rate[x][i])
{
dis[i] = (dis[x] - cost[x][i]) * rate[x][i];
if(dis[start] > v)
return true;
if(!inq[i])
{
Q.push(i);
inq[i] = true;
}
}
}
}
return false;
} int main()
{
int i, j;
while(~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
int a, b;
double rab, rba, cab, cba;
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
if(i == j)
rate[i][j] = ;
else
rate[i][j] = ;
cost[i][j] = ;
}
for(i = ; i < m; i++)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&rab,&cab,&rba,&cba);
rate[a][b] = rab;
rate[b][a] = rba;
cost[a][b] = cab;
cost[b][a] = cba;
}
if(spfa(s))
printf("YES\n");
else
printf("NO\n");
}
return ;
}
POJ 1860 Currency Exchange (最短路)的更多相关文章
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)
感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...
- POJ 1860 Currency Exchange 最短路 难度:0
http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】
链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...
随机推荐
- 使用 JDBC 调用函数 & 存储过程
/** * 如何使用 JDBC 调用存储在数据库中的函数或存储过程 */ @Test public void testCallableStatment() { Connection connectio ...
- SharePoint加K2,将Portal系统与BPM系统完美整合!
K2 blackPearl与Microsoft Office SharePoint 一起为解决人员和流程相互合作的解决方案而提供一个强大的平台. K2“blackpearl”根据企业的需求提供了设计, ...
- Spring学习笔记之整合struts
1.现有项目是通过 <action path="/aaaaAction" type="org.springframework.w ...
- c# 读取excel 出现数字读取成“”空
读取excel用到的方法: /// <summary> /// Excel导入数据源 /// </summary> /// <param name="sheet ...
- 【转发】RedHat Enterprise Linux 6.4 使用 Centos 6 的yum源问题
作为一名新手,学习Linux已经一个月了,其间遇到了不少问题,而今天笔者遇到的问题是 #yum install pam-devel #This system is not registered to ...
- RPI学习--wiringPi_setups
reference: http://wiringpi.com/reference/setup/ There are four ways to initialise wiringPi. wiringPi ...
- AFNETWorking3.x实战教程
上一篇文章介绍了优秀的第三方网络请求框架AFNETWorking2.0,本篇就通过一个实战例子来总结AFNetworking的使用. 本文参考http://www.raywenderlich.com/ ...
- IOS打开其他应用、以及被其他应用打开
1.打开其他应用 appURLStr = "cwork://app_id?title=xxx&content=xxx" [[UIApplication sharedAppl ...
- hdu2795 线段树
//Accepted 6396 KB 3046 ms //线段树 //由于n只有200000,我们可以知道,当h>200000时,大于200000的部分是没有用的 //所以我们可以用n来创建线段 ...
- iOS线程
昨天在项目中使用到了以前所没有使用过的线程,今天有时间来简单的学习一下. 一.线程的创建分为三种方法 (id)init; // designated initializer (id)initWithT ...