Largest Rectangle in a Histogram

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11541    Accepted Submission(s): 3174

Problem Description
A
histogram is a polygon composed of a sequence of rectangles aligned at a
common base line. The rectangles have equal widths but may have
different heights. For example, the figure on the left shows the
histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3,
3, measured in units where 1 is the width of the rectangles:

Usually,
histograms are used to represent discrete distributions, e.g., the
frequencies of characters in texts. Note that the order of the
rectangles, i.e., their heights, is important. Calculate the area of the
largest rectangle in a histogram that is aligned at the common base
line, too. The figure on the right shows the largest aligned rectangle
for the depicted histogram.
 
Input
The
input contains several test cases. Each test case describes a histogram
and starts with an integer n, denoting the number of rectangles it is
composed of. You may assume that 1 <= n <= 100000. Then follow n
integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers
denote the heights of the rectangles of the histogram in left-to-right
order. The width of each rectangle is 1. A zero follows the input for
the last test case.
 
Output
For
each test case output on a single line the area of the largest
rectangle in the specified histogram. Remember that this rectangle must
be aligned at the common base line.
 
Sample Input
7
  2 1 4 5 1 3 3
4
1000 1000 1000 1000
0
 
Sample Output
8
4000
 
Source
 
题意: 给你一个条形图,数值,如上图,要你求出其最大矩形.....
就是给定了你的h(高),要你求宽度....宽度这个是等于j-i+1这样一个长度:
 对于任意一个位置,我们只需要找到他可以组合的最左边,和最右边就可以求出宽度...
于是,(这个思想是参考discuss里别人的....╮(╯▽╰)╭,然后自己理解的)我们不妨做两次求值:
首先从1~~N ,遍历,对于pos这个位置,求出左边比他高的数的下标.....
然后,从N~~!遍历,对于pos这个位置,求出右边比他高的数的下标.....
比如:
  7  2 1 4 5 1 3 3  这组数:
 求解步骤:
  pos   1 2 3 4 5 6 7
  val   2 1 4 5 1 3 3
 ll[]   1 1 3 4 1 6 6  1->n
 rr[]   1 7 4 4 7 7 7  n->1
 
res=(rr[pos]-ll[pos])*hh[pos];
代码:
 #include<cstdio>
#include<cstring>
#define maxn 100005
__int64 ll[maxn],rr[maxn],hh[maxn];
int main()
{
int n,i,t;
while(scanf("%d",&n)&&n)
{
for(i=;i<=n;i++)
scanf("%I64d",&hh[i]);
ll[]=,rr[n]=n;
for(i=;i<=n;i++)
{
t=i;
while(t>&&hh[i]<=hh[t-])
t=ll[t-];
ll[i]=t;
}
for(i=n-;i>;i--)
{
t=i;
while(t<n&&hh[i]<=hh[t+])
t=rr[t+];
rr[i]=t;
}
__int64 res=;
for(i=;i<=n;i++)
{
if(res<(rr[i]-ll[i]+)*hh[i])
res=(rr[i]-ll[i]+)*hh[i];
}
printf("%I64d\n",res);
}
return ;
}
  
     

hdu---1506(Largest Rectangle in a Histogram/dp最大子矩阵)的更多相关文章

  1. HDU 1506 Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. hdu 1506 Largest Rectangle in a Histogram ((dp求最大子矩阵))

    # include <stdio.h> # include <algorithm> # include <iostream> # include <math. ...

  3. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  4. HDU 1506 Largest Rectangle in a Histogram(区间DP)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1506 题目: Largest Rectangle in a Histogram Time Limit: ...

  5. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  6. HDU 1506 Largest Rectangle in a Histogram set+二分

    Largest Rectangle in a Histogram Problem Description: A histogram is a polygon composed of a sequenc ...

  7. hdu 1506 Largest Rectangle in a Histogram 构造

    题目链接:HDU - 1506 A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  8. Hdu 1506 Largest Rectangle in a Histogram 分类: Brush Mode 2014-10-28 19:16 93人阅读 评论(0) 收藏

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. hdu 1506 Largest Rectangle in a Histogram(单调栈)

                                                                                                       L ...

随机推荐

  1. Cheatsheet: 2013 06.23 ~ 06.30, Farewell GoogleReader(2008.07.20~2013.06.30)

    Mobile Resources for Mac and iOS Developers- Introduction to Objective-C Modules Other 10 Principles ...

  2. Map Columns From Different Tables and Create Insert and Update Statements in Oracle Forms

    This is one of my most needed tool to create Insert and Update statements using select or alias from ...

  3. CSRF的防御实例(PHP)

    CSRF的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的CSRF防御也都在服务端进行. 1.服务端进行CSRF防御 服务端的CSRF方式方法很多样,但总的思想都是一致 ...

  4. python_way day13 paramiko

    paramiko 一.安装 pip3 install paramiko 二.使用 1.SSHClient 用于连接远程服务器并执行基本命令 import paramiko # 创建SSH对象 ssh ...

  5. 高效使用Vector

    参考网页: http://www.cnblogs.com/biyeymyhjob/archive/2013/05/11/3072893.html#undefined 1.初始化的时候,最好先用rese ...

  6. 删除List中制定的值的方法

    /** * * @param args */ public static void main(String[] args) { List<String> list = new ArrayL ...

  7. Oracle中synonym和index

    笔记: Oracle-同义词--通过用户名(模式名).表名       --授权:grant create synonym to test1(system用户下授权))     --私有  creat ...

  8. E2 结帐方案如何理解?

    E2 结帐方案如何理解? 此文转载自宇然软件官方网站:http://www.fsyuran.com    

  9. select实现输入模糊匹配与选择双重功能

    下载jqueryUI插件 引入 <link rel="stylesheet" type="text/css" href="/js/jquery/ ...

  10. 在Windows和Linux上安装paramiko模块

    一.paramiko模块有什么用? paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接.由于使用的是python这样的能够跨平台运行的语言 ...