转载自:http://blog.csdn.net/queuelovestack/article/details/52096337

【题意】
给你一个序列A,选出四个下标不同的元素,下标记为a,b,c,d

a≠b≠c≠d,1≤a<b≤n,1≤c<d≤n

满足Aa<Ab,Ac>Ad

问能找到多少个这样的四元组(a,b,c,d)

【类型】
树状数组应用

【分析】
因为a<b,c<d,Aa<Ab,Ac>Ad

所以我们暂时称(a,b)为递增对,(c,d)为递减对

题目就转化成递增对*递减对-重复对

重复对包括如下四种:

①b,c一致

②a,c一致

③b,d一致

④a,d一致

那么我们该如何计算重复对呢?

考虑一致点下标为i,我们需要事先处理出位置i左边比它大的数的个数w[i],比它小的数的个数l[i];右边比它大的数的个数v[i],比它小的数的个数r[i],这样所有重复对的对数为l[i]*r[i]+l[i]*v[i]+w[i]*r[i]+w[i]*v[i]

而计算这些个数可以通过树状数组求解

【时间复杂度&&优化】
O(nlogn)

题目链接→HDU 5792 World is Exploding

感觉他写的真的很好,看完之后就大致可以懂了,但树状数组求的那块太简略,我补充下:

首先要做的是把输入s[i]离散化,因为题目说的是1e9。离散化之后就是每次检查前n项和,求l w数组,同理,更新v r数组,但注意,每次都要初始化c数组,因为c数组代表的就是第几位出现的次数,这两次相求会影响,所以每次都跟新。

这题还说明一个问题:树状数组和离散化合到一起有很大作用,比如这题,他就能求出递增对个数,利用的就是当求i的递增对个数时,求0~i-1中所有出现次数之和。

#include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
#define PI(A) cout<<(A)<<endl
#define SI(N) cin>>(N)
#define SII(N,M) cin>>(N)>>(M)
#define cle(a,val) memset(a,(val),sizeof(a))
#define rep(i,b) for(int i=0;i<(b);i++)
#define Rep(i,a,b) for(int i=(a);i<=(b);i++)
#define reRep(i,a,b) for(int i=(a);i>=(b);i--)
#define dbg(x) cout <<#x<<" = "<<(x)<<endl
#define PIar(a,n) rep(i,n)cout<<a[i]<<" ";cout<<endl;
#define PIarr(a,n,m) rep(aa,n){rep(bb, m)cout<<a[aa][bb]<<" ";cout<<endl;}
const double EPS= 1e- ; /* ///////////////////////// C o d i n g S p a c e ///////////////////////// */ const int MAXN= + ; int n,s[MAXN],c[MAXN],a[MAXN];
ll l[MAXN],r[MAXN],w[MAXN],v[MAXN];
//树状数组
int lowbit(int t){return t&(-t);}
//在c[i]上加x
void add(int i,int x)
{
while(i<=n)
{
c[i]+=x;
i+=lowbit(i);
}
}
//求c[]的前n项和
int sum(int n)
{
int s=;
while(n>)
{
s+=c[n];
n-=lowbit(n);
}
return s;
} int main()
{
while(SI(n))
{
int k,Max=;
//su1是递增对个数 su2是递减对个数
ll ans=,su1=,su2=;
//输入
rep(i,n) {SI(s[i]);a[i]=s[i];}
//将s[]离散化
sort(a,a+n);
k=unique(a,a+n)-a;
rep(i,n)
{
s[i]=lower_bound(a,a+k,s[i])-a+;
Max=max(Max,s[i]);
}
//求递增对个数 和l w数组
cle(c,);
rep(i,n)
{
l[i]=sum(s[i]-);
w[i]=sum(Max)-sum(s[i]);
add(s[i],);
su1+=l[i];
}
//求递减对个数 和r v数组
cle(c,);
reRep(i,n-,)
{
r[i]=sum(s[i]-);
v[i]=sum(Max)-sum(s[i]);
add(s[i],);
su2+=r[i];
}
ans=su1*su2;
//减去重复的
rep(i,n)
ans-=l[i]*r[i]+l[i]*w[i]+v[i]*r[i]+v[i]*w[i];
PI(ans);
}
return ;
}

2016 Multi-University Training Contest 5 World is Exploding的更多相关文章

  1. 2016 Al-Baath University Training Camp Contest-1

    2016 Al-Baath University Training Camp Contest-1 A题:http://codeforces.com/gym/101028/problem/A 题意:比赛 ...

  2. 2016 Al-Baath University Training Camp Contest-1 E

    Description ACM-SCPC-2017 is approaching every university is trying to do its best in order to be th ...

  3. 2016 Al-Baath University Training Camp Contest-1 A

    Description Tourist likes competitive programming and he has his own Codeforces account. He particip ...

  4. 2016 Al-Baath University Training Camp Contest-1 J

    Description X is fighting beasts in the forest, in order to have a better chance to survive he's gon ...

  5. 2016 Al-Baath University Training Camp Contest-1 I

    Description It is raining again! Youssef really forgot that there is a chance of rain in March, so h ...

  6. 2016 Al-Baath University Training Camp Contest-1 H

     Description You've possibly heard about 'The Endless River'. However, if not, we are introducing it ...

  7. 2016 Al-Baath University Training Camp Contest-1 G

    Description The forces of evil are about to disappear since our hero is now on top on the tower of e ...

  8. 2016 Al-Baath University Training Camp Contest-1 F

    Description Zaid has two words, a of length between 4 and 1000 and b of length 4 exactly. The word a ...

  9. 2016 Al-Baath University Training Camp Contest-1 D

    Description X is well known artist, no one knows the secrete behind the beautiful paintings of X exc ...

  10. 2016 Al-Baath University Training Camp Contest-1 C

    Description Rami went back from school and he had an easy homework about bitwise operations (and,or, ...

随机推荐

  1. Codeforces Round #137 (Div. 2)

    A. Shooshuns and Sequence 显然\([k,n]\)之间所有数均要相同,为了求最少步数,即最多模拟\(n\)次操作即可. B. Cosmic Tables 映射\(x_i,y_i ...

  2. Android——BaseAdapter相关

    layout文件: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:an ...

  3. hdu3594 强连通(仙人掌图)

    题意:给定一张有向图,问是否是仙人掌图.仙人掌图的定义是,首先,这张图是一个强连通分量,其次所有边在且仅在一个环内. 首先,tarjan可以判强连通分量是否只有一个.然后对于所有边是否仅在一个环内,我 ...

  4. 最大子段和问题,最大子矩阵和问题,最大m子段和问题

    1.最大子段和问题      问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大.如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为2 ...

  5. Windows Phone使用总结(长期更新)

    [感受和经历] 1,型号,撸妹640XL: 2,经历,去银行办卡,当然各种潜规则要我装APP,然后小妹夺我手机要帮我安装,拿过去之后又还给我了--哈哈哈哈,不过乐极生悲,我以为能成功躲过去了,发现中国 ...

  6. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  7. What are the main disadvantages of Java Server Faces 2.0?

    http://stackoverflow.com/questions/3623911/what-are-the-main-disadvantages-of-java-server-faces-2-0/ ...

  8. SVG添加链接(转载)

    转载地址:http://tech.techweb.com.cn/thread-258715-1-1.html 最基本的交互形式是链接.在 SVG 中,通过一个 <a> 标签提供链接,这与 ...

  9. com.sun.crypto.provider.SunJCE

    Could not instantiate bean class [com.lz.monitor.alert.service.ServiceImp]: Constructor threw except ...

  10. 016. asp.net的验证控件

    RequiredFileldValidator: 检查某个字段是否输入; 空值检查 主要属性: ControlToValidate:要验证的控件 ErrorMessage:错误提示信息 Compare ...