cf666 C. Codeword 组合数学 离线分块思想
6 seconds
256 megabytes
standard input
standard output
The famous sculptor Cicasso is a Reberlandian spy!
These is breaking news in Berlandian papers today. And now the sculptor is hiding. This time you give the shelter to the maestro. You have a protected bunker and you provide it to your friend. You set the security system in such way that only you can open the bunker. To open it one should solve the problem which is hard for others but is simple for you.
Every day the bunker generates a codeword s. Every time someone wants to enter the bunker, integer n appears on the screen. As the answer one should enter another integer — the residue modulo 109 + 7 of the number of strings of length n that consist only of lowercase English letters and contain the string s as the subsequence.
The subsequence of string a is a string b that can be derived from the string a by removing some symbols from it (maybe none or all of them). In particular any string is the subsequence of itself. For example, the string "cfo" is the subsequence of the string "codeforces".
You haven't implemented the algorithm that calculates the correct answers yet and you should do that ASAP.
The first line contains integer m (1 ≤ m ≤ 105) — the number of the events in the test case.
The second line contains nonempty string s — the string generated by the bunker for the current day.
The next m lines contain the description of the events. The description starts from integer t — the type of the event.
If t = 1 consider a new day has come and now a new string s is used. In that case the same line contains a new value of the string s.
If t = 2 integer n is given (1 ≤ n ≤ 105). This event means that it's needed to find the answer for the current string s and the value n.
The sum of lengths of all generated strings doesn't exceed 105. All of the given strings consist only of lowercase English letters.
For each query of the type 2 print the answer modulo 109 + 7 on the separate line.
3
a
2 2
1 bc
2 5
51
162626
In the first event words of the form "a?" and "?a" are counted, where ? is an arbitrary symbol. There are 26 words of each of these types, but the word "aa" satisfies both patterns, so the answer is 51.
题意:
输入一个数q<=10^5,和一个字符串str,所有字符串都只包含小写英文字母
接下来有q个操作:
1 str 把原来的字符串替换成新的字符串
2 n
求:长度为n的,str为其的子串(不用连续)的字符串的个数 % (1e9+7)
保证所有输入的字符串的长度之和 <= 10^5
solution:
首先,这一道题在计数的时候要注意重复的情况
先计算所有,再减去重复的情况?这样太难算了
这道题相当于要填一个长度为n的字符串,使得包含str这个子串
考虑要避免重复,需要具有以下性质:
设长度为n的字符串为t
若t[i]是从str[j]这里拿的,t[i+k]是从str[j+1]拿的,则区间[i+1,i+k-1]这一段不能出现str[j+1]
则可以避免重复
令f(i,j)表示t填写了i个字符,此时指向str的第j个数的方案数
init:f(0,0) = 1
f(i,j) += f(k,j-1) * 25^(i-k-1)
明显复杂度太大了O(n^3)
但是从这一个递推我们发现,方案数只与str的长度len有关,与str的内容没有关系
这样的话,只要一个三元组(len,n,t)即可确定一个答案了
(其实是2元组(len,n),t是用来离线的时候确定第t个询问的)
则可以推出公式,对于一个三元组(len,n,t):
ans = sigma(C(x-1,len-1) * 25^(x-len) * 26^(n-x)), len <= x <= n
如果预处理:
jie[i] = i!
inv[i] = i!的关于mod的逆元 = qp(jie[i],mod-2)
则一次询问可以在O(n)的时间内得到答案,总复杂度O(n^2)还是不够
考虑离线,先len小到大,n小到大排序询问
则相同的len的元组都放在了一起
对于当前的len:
令f[i]表示3元组(len,i,t)的答案,把公式写成递推的形式:
f[i] = 0 ,i < len
f[i]= 1, i = len
f[i] = 26 * f[i-1] + C(i-1,len-1) * 25^(i-len) (组合数C可以O(1))
则可以在O(n)的时间内对当前的len求出n=[1,MAXN-1]的答案,
则可以同时处理掉一大批询问了
对于len发生了变化的询问,只需要再更新一次f数组即可
因为有所有输入的字符串的长度之和 <= 10^5,所以最坏的情况下,输入的字符串的长度分别为
1,2,3,...,ma,则 (1+ma)*ma/2 <= 10^5,则ma的规模是在O(sqrt(n))的,
即是说,最多我们需要更新O(sqrt(n))次f数组,一次更新是O(n)的,所以总复杂度为
O(n^1.5)
这样的复杂度就可以接受了
ps:
刚开始没有预处理逆元,所以求组合数C要O(logn),总复杂度O(n^1.5 * logn),TLE了
代码:
//File Name: cf666C.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年05月20日 星期五 14时28分15秒 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream> #define LL long long using namespace std; const int MAXN = + ;
const int MOD = (int)1e9 + ; LL jie[MAXN], p25[MAXN],inv[MAXN];
LL f[MAXN],ans[MAXN]; struct Query{
int len,n,t;
Query(int _len = ,int _n = ,int _t = ){
len = _len,n = _n,t = _t;
}
bool operator < (const Query & a) const{
if(len == a.len)
return n < a.n;
return len < a.len;
}
}q[MAXN]; LL qp(LL x,LL y){
LL res = ;
while(y){
if(y & ) res = res * x % MOD;
x = x * x % MOD;
y >>= ;
}
return res;
} void init(){
jie[] = ;
for(int i=;i<MAXN;i++)
jie[i] = jie[i-] * i % MOD;
p25[] = ;
for(int i=;i<MAXN;i++){
p25[i] = p25[i-] * % MOD;
}
for(int i=;i<MAXN;i++)
inv[i] = qp(jie[i],MOD - );
} LL get_c(LL x,LL y){
if(x < || x < y) return ;
if(y == || y == x) return ;
return jie[x] * inv[y] % MOD * inv[x-y] % MOD;
} char str[MAXN]; void update(int len,int N){
for(int i=;i<len;i++)
f[i] = ;
f[len] = ;
for(int i=len+;i<=N;i++){
f[i] = f[i-] * % MOD + get_c(i-,len-) * p25[i-len] % MOD;
f[i] %= MOD;
}
} void solve(int tot){
init();
sort(q,q+tot);
int pre = -;
for(int i=;i<tot;i++){
if(q[i].len == pre){
ans[q[i].t] = f[q[i].n];
}
else{
pre = q[i].len;
int now = i;
while(now < tot - && q[now+].len == q[now].len){
now++;
}
update(pre,q[now].n);
ans[q[i].t] = f[q[i].n];
}
}
for(int i=;i<tot;i++)
printf("%d\n",(int)ans[i]);
} int main(){
int op,len,tot = ;
scanf("%d",&op);
scanf("%s",str);
len = strlen(str);
for(int i=,u,n;i<=op;i++){
scanf("%d",&u);
if(u == ){
scanf("%s",str);
len = strlen(str);
}
else{
scanf("%d",&n);
q[tot] = Query(len,n,tot);
tot++;
}
}
solve(tot);
return ;
}
cf666 C. Codeword 组合数学 离线分块思想的更多相关文章
- cf666 C. Codeword 组合数学
题解: 首先暴力很显然 f[i][j]表示到第i个位置,串匹配到j 这样每次是n^2的 我们假设每个位置匹配的第一个位置 然后从这个到上一个位置一定不能等于这个串的值 ans=simga{i,C(i- ...
- Codeforces Round #319 (Div. 1)C. Points on Plane 分块思想
C. Points on Plane On a pl ...
- hdu6333 Harvest of Apples 离线+分块+组合数学(求组合数模板)
Problem B. Harvest of Apples Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K ...
- Codeforces Beta Round #80 (Div. 1 Only) D. Time to Raid Cowavans 离线+分块
题目链接: http://codeforces.com/contest/103/problem/D D. Time to Raid Cowavans time limit per test:4 sec ...
- 莫队算法 sqrt(n)分块思想
在此说一下本渣对莫队算法思想的一些浅薄理解 莫队算法的思想就是对真个区间的分块,然后按照每块来分别进行计算,这样最终的复杂度可以达到n*sqrt(n) 小Z的袜子是一道非常经典的题目.:题目链接htt ...
- ZOJ 1654 Place the Robots建图思维(分块思想)+二分匹配
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=654 AC一百道水题,不如AC一道难题来的舒服. 题意:一个n*m地图 ...
- PAT1057 stack(分块思想)
1057 Stack (30分) Stack is one of the most fundamental data structures, which is based on the princ ...
- HDOJ 4858 项目管理 ( 只是有点 莫队的分块思想在里面而已啦 )
题目: 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4858 题意: 我们建造了一个大项目!这个项目有n个节点,用很多边连接起来,并且这个项目是连通的! ...
- [BZOJ 2957]楼房重建(THU2013集训)(分块思想)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 首先明确问题,对于每栋楼房的斜率K=H/X,问题就是问有多少个楼房的K比前面所有 ...
随机推荐
- HDU-4089 Activation (概率DP求概率)
题目大意:一款新游戏注册账号时,有n个用户在排队.每处理一个用户的信息时,可能会出现下面四种情况: 1.处理失败,重新处理,处理信息仍然在队头,发生的概率为p1: 2.处理错误,处理信息到队尾重新排队 ...
- Oracle学习系列3
Oracle学习系列3 ************************************************************************************ 多表查 ...
- 【计算机视觉领域】常用的 feature 提取方法,feature 提取工具包
[计算机视觉领域]常用的 feature 提取方法,feature 提取工具包 利用 VL 工具包进行各种特征的提取: VL 工具包官网地址:http://www.vlfeat.org/index.h ...
- .NET GC Server-Background-GC
Garbage Collection and Performancehttps://msdn.microsoft.com/en-us/library/ee851764(v=vs.110).aspx h ...
- PHP-网页跳转的几种方式
本文总结了跳转到指定网页的几种方式. 1.利用PHP的header函数Location响应头, header是用来向浏览器返回HTTP响应头(详细请看HTTP协议详解) <?php header ...
- HTTP头详解
HTTP 头部解释 1. Accept:告诉WEB服务器自己接受什么介质类型,*/* 表示任何类型,type/* 表示该类型下的所有子类型,type/sub-type. 2. Accept-Chars ...
- Visual Studio 调试技巧
.net程序开发工具我都用vs(visual studio),开发过程中的跟踪调试最常用的就是断点跟踪调试了,但是现在才发现,用了这么多年vs断点跟踪调试是白用了啊.它居然还可以有这么多用法. 设置断 ...
- php面向对象中的魔术方法中文说明
1.__construct() 实例化对象是被自动调用.当__construct和以类名为函数名的函数 同时存在时调用__construct,另一个不背调用. 类名为函数名的函数为老版的构造函数. 2 ...
- Show a heart shaped
Windows Form application version: private void Form1_Load(object sender, EventArgs e) { ...
- oracle ORA-01747(系统保留关键字)user.table.column, table.column 或列说明无效 hibernate映射oracle保留关键字
1.查询系统关键 select * from v$reserved_words 确认你使用的是否为关键字: select * from v$reserved_words w where w.KEYWO ...