最开始的时候思路就想错了,就不说错误的思路了。

因为这n个数的总和是一定的,所以在取数的时候不是让自己尽可能拿的最多,而是让对方尽量取得最少。

记忆化搜索(时间复杂度O(n3)):

d(i, j)表示原序列中第i个元素到第j个元素构成的子序列,先手取数能够得到的最大值。

sum(i, j) 表示从第i个元素到第j个元素的和

因为要让对手获得最小的分数,所以状态转移方程为:

d(i, j) = sum(i, j) - min{d(枚举所有可能剩给对手的序列), 0(0代表全部取完)}

s数组保存a中前i个元素的和,这样sum(i, j) = s[j] - s[i-1]

 #define LOCAL
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ;
int a[maxn], s[maxn], d[maxn][maxn], vis[maxn][maxn]; int dp(int i, int j)
{
if(vis[i][j])
return d[i][j];
vis[i][j] = ;
int m = ;
for(int k = i + ; k <= j; ++k)
m = min(m, dp(k, j));
for(int k = j - ; k >= i; --k)
m = min(m, dp(i, k));
d[i][j] = s[j] - s[i-] - m;
return d[i][j];
} int main(void)
{
#ifdef LOCAL
freopen("10891in.txt", "r", stdin);
#endif int n;
while(scanf("%d", &n) == && n)
{
s[] = ;
for(int i = ; i <= n; ++i)
{
scanf("%d", &a[i]);
s[i] = s[i-] + a[i];
}
memset(vis, , sizeof(vis));
printf("%d\n", *dp(, n) - s[n]);
}
return ;
}

代码君

递推(时间复杂度O(n2)):

令f(i, j) = min{d(i, j), d(i+1, j),,,d(j, j)}

g(i, j) = min{d(i, j), d(i, j-1),,,d(i, i)}

则状态转移方程可写成:

d(i, j) = min{f(i+1, j), g(i, j-1), 0}

f和g的递推为:

f(i, j) = min{d(i, j), f(i+1, j)}

g(i, j) = min{d(i, j), g(i, j-1)}

 //#define LOCAL
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ;
int a[maxn], s[maxn], d[maxn][maxn], f[maxn][maxn], g[maxn][maxn]; int main(void)
{
#ifdef LOCAL
freopen("10891in.txt", "r", stdin);
#endif int n;
while(scanf("%d", &n) == && n)
{
s[] = ;
for(int i = ; i <= n; ++i)
{
scanf("%d", &a[i]);
s[i] = s[i-] + a[i];
}
for(int i = ; i <= n; ++i)//边界
d[i][i] = f[i][i] = g[i][i] = a[i];
for(int L = ; L < n; ++L)
for(int i = ; i + L <= n; ++i)
{
int j = i + L;
int m = ;
m = min(m, f[i+][j]);
m = min(m, g[i][j-]);
d[i][j] = s[j] - s[i-] - m;
//更新f和g
f[i][j] = min(d[i][j], f[i+][j]);
g[i][j] = min(d[i][j], g[i][j-]);
} printf("%d\n", *d[][n] - s[n]);
}
return ;
}

代码君

UVa 10891 (博弈+DP) Game of Sum的更多相关文章

  1. UVA 10891 区间DP+博弈思想

    很明显带有博弈的味道.让A-B最大,由于双方都采用最佳策略,在博弈中有一个要求时,让一方的值尽量大.而且由于是序列,所以很容易想到状态dp[i][j],表示序列从i到j.结合博弈中的思想,表示初始状态 ...

  2. uva 10891 区间dp+记忆化搜索

    https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...

  3. UVA 10891 Game of Sum(DP)

    This is a two player game. Initially there are n integer numbers in an array and players A and B get ...

  4. UVa 10891 Game of Sum (DP)

    题意:给定一个长度为n的整数序列,两个人轮流从左端或者右端拿数,A先取,问最后A的得分-B的得分的结果. 析:dp[i][j] 表示序列 i~j 时先手得分的最大值,然后两种决策,要么从左端拿,要么从 ...

  5. UVA 10891 SUM游戏 DP

    刚看到这个题目不知道怎么个DP法,有点难想到 解法如下 设置dp[i][j]代表i到j这段子序列能获得的最大值,这样,枚举m=min(m,dp[i+1到j][j],dp[i][i到j-1]),m就代表 ...

  6. [题解]UVa 10891 Game of Sum

    在游戏的任何时刻剩余的都是1 - n中的一个连续子序列.所以可以用dp[i][j]表示在第i个数到第j个数中取数,先手的玩家得到的最大的分值.因为两个人都很聪明,所以等于自己和自己下.基本上每次就都是 ...

  7. 09_Sum游戏(UVa 10891 Game of Sum)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P67 例题28: 问题描述:有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取,每次可以从左端或者右端取一个或多个数,但不能两端 ...

  8. UVa 10891 Game of Sum - 动态规划

    因为数的总和一定,所以用一个人得分越高,那么另一个人的得分越低. 用$dp[i][j]$表示从$[i, j]$开始游戏,先手能够取得的最高分. 转移通过枚举取的数的个数$k$来转移.因为你希望先手得分 ...

  9. hdu 4597 + uva 10891(一类区间dp)

    题目链接:http://vjudge.net/problem/viewProblem.action?id=19461 思路:一类经典的博弈类区间dp,我们令dp[l][r]表示玩家A从区间[l, r] ...

随机推荐

  1. Asp.net的服务器推技术 (Server Push)

    在以往的和服务器端通信技术中,我们多数使用的是AJAX轮询式访问,也就是在Javascript中控制时间间隔,然后每隔一段时间就访问一次服务器,然后获得数据或通知.但是这种轮询方式的访问有90%是在做 ...

  2. Swift 2.0 到底「新」在哪?

    [编者按]2015年6月,一年一度的苹果 WWDC 大会如期而至,在大会上苹果发布了 Swift 2.0,引入了很多新的特性,以帮助开发者更快.更简单地构建应用.本篇文章作者是 Maxime defa ...

  3. Heroku 与 ASP.NET 5

    一. Heroku 简单来讲,Heroku是一个支持多种语言.极易部署.多价位可免费的 Pass 平台,通过 Buildpack 搭建语言运行环境, 默认内建的大部分是 Web 开发中较为常见的语言, ...

  4. 传说中的WCF(3):多个协定

    我们知道,WCF服务端是先定义服务协定,其实就是一个接口,然后通过实现接口来定义服务类.那么,有一个问题,如果一个服务类同时实现N个接口(也就是有N个协定)呢?结果会如何? 不必猜,我们还是通过实验来 ...

  5. iframe父子兄弟之间调用传值(contentWindow && parent)

    iframe的调用包括以下几个方面:(调用包含html dom,js全局变量,js方法) 主页面调用iframe: iframe页面调用主页面: 主页面的包含的iframe之间相互调用: 主要知识点 ...

  6. CyclicBarrier、CountDownLatch与Semaphore的小记

    CyclicBarrier: 适合的业务场景,比如 1).,现有一大任务,需要得到全年的统计数据的,这个工作量是巨大的,那么可以将其分割为12个月的子任务,各个子任务相互独立,当所有子任务完成了,则就 ...

  7. QScrollArea可以帮助我们实现让一个widget的内容带有滚动条(QWidget里内置QScrollArea,QScrollArea里再内置其它QWidget)

    使用QScrollArea可以帮助我们实现让一个widget的内容带有滚动条,用户可以通过拖动滚动条来查看更多内容, 代码示例如下: 1.带有滚动条的widget列表 #include "w ...

  8. Win8.1安装VirtualSVN Server发生service visualSVN Server failed to start解决办法

    Service 'VisualSVN Server' failed to start. Please check VisualSVN Server log in Event Viewer for mo ...

  9. OpenGL基础知识

    基本概念 透视(Perspective)变换(Transformation)投影矩阵(Projection Matrix):用于将3D坐标转换为2D屏幕坐标光栅化(Rasterization): 实际 ...

  10. SGU 125 Shtirlits 搜索+可行性剪枝

    500ms时限406ms水过…… 直接枚举肯定超时,需要剪枝. 枚举每个格子的元素,检查其左上角和正上方格子是否满足条件,若不满足不必再向下搜索. 在 这里 看到一个更好的方法: 枚举每个格子是哪个相 ...