Description

Given an array of n * m matrix, and a moving matrix window (size k * k), move the window from top left to bottom right at each iteration, find the maximum sum inside the window at each moving.

Return 0 if the answer does not exist.

Example

Example 1:

Input:[[1,5,3],[3,2,1],[4,1,9]],k=2
Output:13
Explanation:
At first the window is at the start of the matrix like this [
[|1, 5|, 3],
[|3, 2|, 1],
[4, 1, 9],
]
,get the sum 11;
then the window move one step forward. [
[1, |5, 3|],
[3, |2, 1|],
[4, 1, 9],
]
,get the sum 11;
then the window move one step forward again. [
[1, 5, 3],
[|3, 2|, 1],
[|4, 1|, 9],
]
,get the sum 10;
then the window move one step forward again. [
[1, 5, 3],
[3, |2, 1|],
[4, |1, 9|],
]
,get the sum 13;
SO finally, get the maximum from all the sum which is 13.

Example 2:

Input:[[10],k=1
Output:10
Explanation:
sliding window size is 1*1,and return 10.

Challenge

O(n^2) time.

思路:

考点:

  • 二维前缀和

题解:

  • sum[i][j]存储左上角坐标为(0,0),右下角坐标为(i,j)的子矩阵的和。
  • sum[i][j] = matrix[i - 1][j - 1] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];递推求值即可,两部分相加,减去重复计算部分。
  • int value = sum[i][j] - sum[i - k][j] -sum[i][j - k] + sum[i - k][j - k];可求得一个k * k大小子矩阵的和。
    public class Solution {
    /**
    * @param matrix: an integer array of n * m matrix
    * @param k: An integer
    * @return: the maximum number
    */
    public int maxSlidingMatrix(int[][] matrix, int k) {
    // Write your code here
    int n = matrix.length;
    if (n == 0 || n < k)
    return 0;
    int m = matrix[0].length;
    if (m == 0 || m < k)
    return 0; int[][] sum = new int[n + 1][m + 1];
    for (int i = 0; i <= n; ++i) sum[i][0] = 0;
    for (int i = 0; i <= m; ++i) sum[0][i] = 0; for (int i = 1; i <= n; ++i)
    for (int j = 1; j <= m; ++j)
    sum[i][j] = matrix[i - 1][j - 1] +
    sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1]; int max_value = Integer.MIN_VALUE;
    for (int i = k; i <= n; ++i)
    for (int j = k; j <= m; ++j) {
    int value = sum[i][j] - sum[i - k][j] -
    sum[i][j - k] + sum[i - k][j - k]; if (value > max_value)
    max_value = value;
    }
    return max_value;
    }
    }

      

Sliding Window Matrix Maximum的更多相关文章

  1. LintCode Sliding Window Matrix Maximum

    原题链接在这里:http://www.lintcode.com/zh-cn/problem/sliding-window-matrix-maximum/ 题目: Given an array of n ...

  2. 239. Sliding Window Maximum

    题目: Given an array nums, there is a sliding window of size k which is moving from the very left of t ...

  3. leetcode面试准备:Sliding Window Maximum

    leetcode面试准备:Sliding Window Maximum 1 题目 Given an array nums, there is a sliding window of size k wh ...

  4. Sliding Window Maximum 解答

    Question Given an array of n integer with duplicate number, and a moving window(size k), move the wi ...

  5. Sliding Window Maximum

    (http://leetcode.com/2011/01/sliding-window-maximum.html) A long array A[] is given to you. There is ...

  6. 【LeetCode】239. Sliding Window Maximum

    Sliding Window Maximum   Given an array nums, there is a sliding window of size k which is moving fr ...

  7. Sliding Window Maximum LT239

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  8. 【刷题-LeetCode】239. Sliding Window Maximum

    Sliding Window Maximum Given an array nums, there is a sliding window of size k which is moving from ...

  9. LeetCode题解-----Sliding Window Maximum

    题目描述: Given an array nums, there is a sliding window of size k which is moving from the very left of ...

随机推荐

  1. day49——圆形头像、定位、z-index、js

    day49 今日内容 圆形头像 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  2. 怎么删除json 键值对

    var obj = { 'id': 1, 'name': 2 } delete obj.id delete obj['id'] console.log(obj) //{ 'name': 2 }

  3. nacos初探--作为配置中心

    什么是nacos Nacos 支持基于 DNS 和基于 RPC 的服务发现(可以作为springcloud的注册中心).动态配置服务(可以做配置中心).动态 DNS 服务. 官方介绍是这样的: Nac ...

  4. liunx下Oracle安装

    1. 引言 将近一个月没有更新博客了,最近忙着数据库数据迁移工作:自己在服务器上搭建了oracle数据库,一步步走下来遇见很多BUG:现在自己记录下,方便以后有用上的地方: 2. 准备工作 oracl ...

  5. Linux生产环境上,最常用的一套“AWK“技巧【转】

    最有用系列: <Linux生产环境上,最常用的一套“vim“技巧> <Linux生产环境上,最常用的一套“Sed“技巧> <Linux生产环境上,最常用的一套“AWK“技 ...

  6. 使用jmeter对dubbo接口进行性能测试教程及常见问题处理

    一.   测试脚本编写 脚本可参考git项目: https://github.com/aland-1415/dubbo-interface-test.git 1. pom依赖 (注意添加的jmeter ...

  7. 【JVM】jdk1.8-jetty-swap被占满问题排查

    背景 线上服务收到报警,报警内容:虚拟机swap区占用比例超过80%,如图: 本文着重描述排查问题的过程,在这个过程中不断的猜测–>验证–>推翻–>再猜测–>再验证–>再 ...

  8. js模块基础练习题

    题目描述 完成函数 createModule,调用之后满足如下要求: 1.返回一个对象 2.对象的 greeting 属性值等于 str1, name 属性值等于 str2 3.对象存在一个 sayI ...

  9. Flask--配置文件

    配置文件 配置文件的方式有很多,下面介绍两种: 第一种:根据全局变量实现 App.py from flask import Flask, session app = Flask(__name__) # ...

  10. Set,List,Map,Collection

    // JAVA集合主要分为三种类型: // // Set(集) List(列表) Map(映射) Collection 接口 // // Collection是最基本的集合接口,声明了适用于JAVA集 ...