题目大意 多组数据,每组数据给出一个正整数 \(n\),请求出一组数 \(a_1\cdots a_m\),满足 \(LCM_{k=1}^ma_k=n\) 且 \(\sum_{k=1}^ma_k\) 最小。

分析 我们以两个数为例进行研究。假定 \(LCM(a,b)=n\) 则如果 \(GCD(a,b)\neq 1\),有 \(LCM(\frac{a}{gcd(a,b)},b)=n\),且 \(a+b>\frac{a}{gcd(a,b)}+b\)。故当且仅当 \(gcd(a,b)=1\) 时最优。而对于多个数的情况,也是当且仅当 \(\prod_{k=1}^ma_k=n\) 时最优。而对于正整数 \(a_1\geq 2,a_2\geq2,\cdots,a_m\geq2\),总有 \(\sum_{k=1}^ma_k\leq \prod_{k=1}^ma_k\)。所以如果可以将 \(n\) 质因数分解为 \(n=\prod_{k=1}^mp_k^{q_k}\)(其中 \(\forall i\in\mathbb{N+},p_i\) 为质数),则当且仅当 \(\forall i\in\mathbb{N+},a_i=p_i^{q_i}\) 时有最优解。

#include<bits/stdc++.h>
using namespace std; typedef long long ll; ll t, tot, n, ans;
map<ll, ll> m; ll QuickPow(ll a, ll b)
{
ll res = 1;
while(b) {
if(b & 1) res *= a;
a = a * a, b >>= 1;
}
return res;
} int main()
{
while(~scanf("%lld", &n) && n) {
m.clear(), ans = 0, tot = 0; for(ll i = 2; i * i <= n && n > 1; ++i)
while(n % i == 0) ++m[i], n /= i;
if(n > 1) m[n] = 1; map<ll, ll>::iterator it = m.begin();
while(it != m.end()) {
ans += QuickPow(it->first, it->second);
++it, ++tot;
} if(tot < 2) ans += 2 - tot;
printf("Case %lld: %lld\n", ++t, ans);
}
}

题解 UVa10791的更多相关文章

  1. 题解:UVA10791 Minimum Sum LCM

    原题 题目大意 输入整数\(n(1\le n<2^{31})\) ,求至少两个正整数,是它们的最小公倍数为$ n$,且这些整数的和最小.输出最小的和. 有多组测试输入,以\(0\)结束. 题解 ...

  2. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  3. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  4. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  5. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  6. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  7. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  8. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  9. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

随机推荐

  1. LeetCode 912. 排序数组(Sort an Array) 43

    912. 排序数组 912. Sort an Array 题目描述 每日一算法2019/6/15Day 43LeetCode912. Sort an Array

  2. 余胜威《MATLAB数学建模经典案例实战》2015年版

    内容介绍 本书全面.系统地讲解了数学建模的知识.书中结合历年全国大学生数学建模竞赛试题,采用案例与算法程序相结合的方法,循序渐进,逐步引导读者深入挖掘实际问题背后的数学问题及求解方法.在本书案例的分析 ...

  3. STM32学习笔记 —— 1.1 什么是寄存器(概念分析)

    问题引入: 用一句话回答以下问题: 什么是寄存器? 什么是寄存器映射? 什么是存储器映射? (本章重点在 1.1.3 和 1.1.4) 1.1 STM32芯片实物图 (图) 学会看丝印图 芯片型号.内 ...

  4. 「UR#5」怎样更有力气

    「UR#5」怎样更有力气 解题思路 考虑没有限制的情况,一定是把操作离线下来,按照边权从小到达做.可以发现,如果没有限制,完全图是多余的,直接拿树边进行合并就可以了.我们要做这么一件事情,把每个点属于 ...

  5. stone [期望]

    也许更好的阅读体验 \(\mathcal{Description}\) 有 \(n\) 堆石子,依次编号为 \(1, 2,\ldots , n\),其中第 \(i\) 堆有 \(a_i\) 颗石子 你 ...

  6. Android 系统架构 和 各个版本代号介绍

    一.Android 系统架构: 1. linux内核层Android 基于Linux内核,为Android设备的各种硬件提供底层驱动 比如: 显示驱动.音频.照相机.蓝牙.Wi-Fi驱动,电源管理等 ...

  7. 如何在一个Docker中同时运行多个程序进程?

    我们都知道Docker容器的哲学是一个Docker容器只运行一个进程,但是有时候我们就是需要在一个Docker容器中运行多个进程 那么基本思路是在Dockerfile 的CMD 或者 ENTRYPOI ...

  8. IDEA和Eclipse启动优化

    昨天对比了下IDEA和Eclipse的启动速度,发现IDEA启动真的是好慢啊!!! 电脑配置:8G win7 IDEA启动配置 -Xms1024m -Xmx1024m -Xmn500m -XX:Met ...

  9. Mybatis中使用association及collection进行一对多双向关联示例(含XML版与注解版)

    XML版本: 实体类: package com.sunwii.mybatis.bean; import java.util.ArrayList; import java.util.List; impo ...

  10. Python DBUtils 连接池对象 (PooledDB)

    数据处理框架用到 mysql, 需要在多进程中的多线程中使用 mysql 的连接 使用到的模块: DBUtils 实现: 使用 DBUtils 中的 PooledDB 类来实现. 自己写一个类, 继承 ...