PKUSC2018题解
PKUSC2018题解
真实排名
分别考虑第\(i\)个人翻倍和不翻倍的情况,组合数算一下即可,务必注意实现细节。
最大前缀和
设\(sum_s\)表示集合\(\sum_{i\in s} a_i\),\(f_s\)表示最大前缀和等于\(sum_s\)的方案数,\(g_s\)表示选出集合\(s\)排成的最大前缀和均不大于\(0\)的方案数。
因为最终的答案肯定是最大前缀和所在的位置\(pos\)后面一定不存在有一段前缀和大于\(0\),否则向后更新还可以更优。
令全集为\(U\)那么
\[
Ans=\sum_{S\subseteq U} sum_S\times f_S\times g_{\complement_U S}
\]
现在主要是考虑如何求\(f,g\):
考虑主动转移,由后往前插入数字\(i\),那么\(f_S\rightarrow f_{S\cup \{i\}},sum_S>0\),因为这样的话从i向后选一定会更优;\(g\)的转移比较简单,就是\(g_S\rightarrow g_{S\cup \{i\}},sum_{S\cup\{i\}}\leq 0\)。
主斗地
待填
星际穿越
令\(L(i)=\min_{j=i}^nl_j\),首先你从一个点\(i\)起跳你的往左的可达区间为\([l_i,i)\),然后第二步跳就可以跳到\([L(l_i),l_i)\),然后一直跳就是这么个情况:\([L(L(...L(l_i))),上一次落脚点)\)。
直接预处理一个跳到另外一个是\(O(n^2)\)的有\(70pts\),考虑怎么优化。
令倍增数组\(f_{i,j}\)表示从\(j\)左跳\(2^i\)下跳到哪,\(g_{i,j}\)表示\([f_{i,j},j]\)中所需贡献是多少。
那么你每次倍增求出\(x\rightarrow l\)的代价然后减去\(x\rightarrow r+1\)的代价即可,倍增的具体过程见代码。
神仙的游戏
考虑长度为\(len\)的\(border\)的性质,就是说对于长度为\(n\)的字符串\(s\),\(s[1...len]=s[n-len+1,n]\)(这不是定义吗)
也就是说位置\(i\equiv j\;(\bmod\;n-len)\)的话,\(i,j\)的数字相等。
那么对于一个不同的\(0,1\)假设他们的位置之差为\(x\),假设不成立,则有\(x \equiv 0\;(\bmod\;n-len\)),即对于\(y|x\),长度\(n-y\)的\(border\)不满足条件。
然后\(O(n^2)\)地做这个东西是\(67pts\),想办法优化。
构造多项式
\[
A(x)=\sum_{i=0}^{n-1}[s_i=0]x^i\\
B(x)=\sum_{i=0}^{n-1}[s_i=1]x^i
\]
因为我们要求确定差值,而多项式乘法能做的事是求出确定和,我们可以将\(A,B\)任意一个多项式\(reverse\)就可以做到了,最后枚举长度\(len\)的倍数,如果\(C=A\times B\)没有地方的\(C[n-1-k\cdot len]\geq 1\)以及\([n-1+k\cdot len]\geq 1\),那么长度\(len\)就满足条件,这一部分复杂度是调和级数的。
总复杂度\(O(n\log n+n\ln n)\)。
PKUSC
待填
PKUSC2018题解的更多相关文章
- loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】
这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...
- 题解 洛谷 P5465 【[PKUSC2018]星际穿越】
首先考虑题目的性质,发现点向区间连的边为双向边,所以也就可以从一个点向右跳到区间包含该点的点,如图所示: 但事实上向后跳其实是不优的,可以有更好的方法来节省花费: 因此我们发现一个点跳到其前一个区间的 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
- 【LOJ6433】【PKUSC2018】最大前缀和
[LOJ6433][PKUSC2018]最大前缀和 题面 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做这个题,于是小 C ...
- 【LOJ4632】[PKUSC2018]真实排名
[LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...
- 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)
[LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...
- [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC
[LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...
随机推荐
- linux (centos)增删改查用户命令
1,查看用户 cat /etc/passwd 2,删除用户 userdel 用户名 3,查看组 cat /etc/group 4,删除组 groupdel 组名 5.查看系统中有哪些用户: cut - ...
- java截取字符串中的最后几个字符
Java中的String类提供了一个substring(int from, int to)方法用于截取字符串中位置为from到to-1位置的字符. 因为字符串的字符位置是从0开始的,而substrin ...
- 『公交线路 状压dp 矩阵乘法加速』
公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的 ...
- IIS Express 启用目录浏览 方法
标签: iis / visual studio / C# / ASP.NET / .NET 522 今天刚刚使用visual studio 2013创建第一个hello world,结果就发现提示错误 ...
- War 包部署
Springboot 进行war包部署,以及踩坑历险!!! https://www.jianshu.com/p/4c2f27809571 Springboot2项目配置(热部署+war+外部tomca ...
- FPGA最小系统设计
以EP4CE6E22I7为例,设计FPGA最小系统. 程序存储设计 一般使用EPCS4I8N: FPGA_DATA0:13 FPGA_DCLK :12 FPGA_nCS:8 ASDO:6 时钟 待续
- WebGIS之MapBox篇
前面在Arcgis的基础上玩了玩,这不最近又去摸索了一下Web上开源的GIS;这次选择了基于MapBox来实现一些效果: 1.加载自己发布的本地瓦片效果 2.加载热力图.Echarts.三位建筑.路况 ...
- JAVA性能监控与调优参考文档链接
JAVA性能监控与调优参考文档链接 jdk8工具集 https://docs.oracle.com/javase/8/docs/technotes/tools/unix/index.htmlTroub ...
- 最新版windows安装支持输入shell命令的工具cygwin教程
首先去官网下载自己对应系统32位或64位系统版本安装包:https://cygwin.com/install.html 下载好后按提示一步一步安装,直到这一步: 初次安装,这里是空的,没有下载的镜像链 ...
- 如何使用 Set 来提高JS代码的性能
摘要: 高效使用Set! 作者:前端小智 原文:如何使用 Set 来提高代码的性能 Fundebug经授权转载,版权归原作者所有. 为了保证的可读性,本文采用意译而非直译. 我确信有很多开发人员坚持使 ...