不错的文章:LDA-math-MCMC 和 Gibbs Sampling

可作为精进MCMC抽样方法的学习材料。

简单概率分布的模拟

Box-Muller变换原理详解

本质上来说,计算机只能生产符合均匀分布的采样。如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样、拒绝采样以及自适应的拒绝采样等等。

涉及到 "逆变换" [Bayes] runif: Inversion Sampling

例如:U1, U2是均匀分布,可得到两个高斯分布的变量X, Y。

复杂概率分布的模拟

使用的必要性

当p(x)的形式很复杂,或者 p(x) 是个高维的分布的时候,样本的生成就可能很困难了。 譬如有如下的情况

      • p(x)=p~(x)∫p~(x)dx,而 p~(x) 我们是可以计算的,但是底下的积分式无法显式计算。
      • p(x,y) 是一个二维的分布函数,这个函数本身计算很困难,但是条件分布 p(x|y),p(y|x)的计算相对简单;如果 p(x) 是高维的,这种情形就更加明显。

此时就需要使用一些更加复杂的随机模拟的方法来生成样本。而本节中将要重点介绍的 MCMC(Markov Chain Monte Carlo) 和 Gibbs Sampling算法就是最常用的一种,这两个方法在现代贝叶斯分析中被广泛使用。要了解这两个算法,我们首先要对马氏链的平稳分布的性质有基本的认识。

马氏链及其平稳分布

平稳性:这个收敛行为主要是由概率转移矩阵P决定的。

自然的,这个收敛现象并非是我们这个马氏链独有的,而是绝大多数马氏链的共同行为,关于马氏链的收敛我们有如下漂亮的定理:

马氏链定理 如果一个非周期马氏链具有转移概率矩阵P,且它的任何两个状态是连通的,那么 limn→∞Pnij 存在且与i无关,记 limn→∞Pnij=π(j), 我们有

    1. limn→∞Pn=⎡⎣⎢⎢⎢⎢⎢π(1)π(1)⋯π(1)⋯π(2)π(2)⋯π(2)⋯⋯⋯⋯⋯⋯π(j)π(j)⋯π(j)⋯⋯⋯⋯⋯⋯⎤⎦⎥⎥⎥⎥⎥
    2. π(j)=∑i=0∞π(i)Pij
    3. π 是方程 πP=π 的唯一非负解

其中,  π=[π(1),π(2),⋯,π(j),⋯],∑i=0∞πi=1

π称为马氏链的平稳分布。

这个马氏链的收敛定理非常重要,所有的 MCMC(Markov Chain Monte Carlo) 方法都是以这个定理作为理论基础的

历史由来

马氏链的平稳分布 --> Metropolis算法

对于给定的概率分布p(x),我们希望能有便捷的方式生成它对应的样本。由于马氏链能收敛到平稳分布, 于是一个很的漂亮想法是:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态x0出发沿着马氏链转移, 得到一个转移序列 x0,x1,x2,⋯xn,xn+1⋯,, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本xn,xn+1⋯。

这个绝妙的想法在1953年被 Metropolis想到了,为了研究粒子系统的平稳性质, Metropolis 考虑了物理学中常见的波尔兹曼分布的采样问题,首次提出了基于马氏链的蒙特卡罗方法,即Metropolis算法,并在最早的计算机上编程实现。Metropolis 算法是首个普适的采样方法,并启发了一系列 MCMC方法,所以人们把它视为随机模拟技术腾飞的起点。 Metropolis的这篇论文被收录在《统计学中的重大突破》中, Metropolis算法也被遴选为二十世纪的十个最重要的算法之一。

改进变种:Metropolis-Hastings 算法

我们接下来介绍的MCMC 算法是 Metropolis 算法的一个改进变种,即常用的 Metropolis-Hastings 算法。

Gibbs Sampling

对于,由于接受率 α的存在(通常 α<1), 以上 Metropolis-Hastings 算法的效率不够高。能否找到一个转移矩阵Q使得接受率 α=1 呢?

[Bayes] MCMC (Markov Chain Monte Carlo)的更多相关文章

  1. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  2. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  3. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  4. Markov Chain Monte Carlo Simulation using C# and MathNet

    Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document i ...

  5. 为什么要用Markov chain Monte Carlo (MCMC)

    马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distrib ...

  6. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  7. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  8. Monte Carlo方法简介(转载)

    Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...

  9. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

随机推荐

  1. python函数调用时参数传递方式

    python函数调用时参数传递方式 C/C++参数传递方式 对于C程序员来说,我们都知道C在函数调用时,采用的是值传递,即形参和实参分配不同的内存地址,在调用时将实参的值传给实参,在这种情况下,在函数 ...

  2. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  3. docker学习6-docker-compose容器集群编排

    前言 实际工作中我们部署一个应用,一般不仅仅只有一个容器,可能会涉及到多个,比如用到数据库,中间件MQ,web前端和后端服务,等多个容器. 我们如果一个个去启动应用,当项目非常多时,就很难记住了,所有 ...

  4. SQL中and和or的区别是?

    今天有这样得一个需求,如果登陆人是客服的话,会查询订单是’该客服’以及还没有匹配客服的,刚开始想的是直接在sql语句上拼写  or  assigned_id is null  的,测试了一下发现这样的 ...

  5. Mybatis框架-@Param注解

    回顾一下上一个小demo中存在的问题,是是根据用户的id修改用户的密码,我们只是修改了用户的密码,结果我们的在写接口方法的时候掺入的参数确实一个User对象,这样让别人看到我们的代码真的是很难读懂啊! ...

  6. (生鲜项目)05. RESTful api, 和 VUE

    第一步: 什么是 RESTful api 总结: 使用http协议作为介质, 达到客户端修改服务器端资源的目的, 服务器只需要提供指定的api接口, 客户端根据http协议中的post/get/put ...

  7. LeetCode 875. Koko Eating Bananas

    原题链接在这里:https://leetcode.com/problems/koko-eating-bananas/ 题目: Koko loves to eat bananas.  There are ...

  8. RESTful API Design: 13 Best Practices to Make Your Users Happy

    RESTful API Design: 13 Best Practices to Make Your Users Happy First step to the RESTful way: make s ...

  9. 2019.12.07 java基础

    编译时报错,叫做编译失败 class Demo01 { public static void main(String[] args) { int a; a=12; System.out.println ...

  10. bootstrap导航条组件

    一.导航条模板(官方文档) <nav class="navbar navbar-default"> <div class="container-flui ...