[Bayes] MCMC (Markov Chain Monte Carlo)
不错的文章:LDA-math-MCMC 和 Gibbs Sampling
可作为精进MCMC抽样方法的学习材料。
简单概率分布的模拟
Box-Muller变换原理详解
本质上来说,计算机只能生产符合均匀分布的采样。如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样、拒绝采样以及自适应的拒绝采样等等。
涉及到 "逆变换" [Bayes] runif: Inversion Sampling
例如:U1, U2是均匀分布,可得到两个高斯分布的变量X, Y。

复杂概率分布的模拟
使用的必要性
当p(x)的形式很复杂,或者 p(x) 是个高维的分布的时候,样本的生成就可能很困难了。 譬如有如下的情况
- p(x)=p~(x)∫p~(x)dx,而 p~(x) 我们是可以计算的,但是底下的积分式无法显式计算。
- p(x,y) 是一个二维的分布函数,这个函数本身计算很困难,但是条件分布 p(x|y),p(y|x)的计算相对简单;如果 p(x) 是高维的,这种情形就更加明显。
此时就需要使用一些更加复杂的随机模拟的方法来生成样本。而本节中将要重点介绍的 MCMC(Markov Chain Monte Carlo) 和 Gibbs Sampling算法就是最常用的一种,这两个方法在现代贝叶斯分析中被广泛使用。要了解这两个算法,我们首先要对马氏链的平稳分布的性质有基本的认识。
马氏链及其平稳分布
平稳性:这个收敛行为主要是由概率转移矩阵P决定的。
自然的,这个收敛现象并非是我们这个马氏链独有的,而是绝大多数马氏链的共同行为,关于马氏链的收敛我们有如下漂亮的定理:
马氏链定理: 如果一个非周期马氏链具有转移概率矩阵P,且它的任何两个状态是连通的,那么 limn→∞Pnij 存在且与i无关,记 limn→∞Pnij=π(j), 我们有
- limn→∞Pn=⎡⎣⎢⎢⎢⎢⎢π(1)π(1)⋯π(1)⋯π(2)π(2)⋯π(2)⋯⋯⋯⋯⋯⋯π(j)π(j)⋯π(j)⋯⋯⋯⋯⋯⋯⎤⎦⎥⎥⎥⎥⎥
- π(j)=∑i=0∞π(i)Pij
- π 是方程 πP=π 的唯一非负解
其中, π=[π(1),π(2),⋯,π(j),⋯],∑i=0∞πi=1
π称为马氏链的平稳分布。
这个马氏链的收敛定理非常重要,所有的 MCMC(Markov Chain Monte Carlo) 方法都是以这个定理作为理论基础的。
历史由来
马氏链的平稳分布 --> Metropolis算法
对于给定的概率分布p(x),我们希望能有便捷的方式生成它对应的样本。由于马氏链能收敛到平稳分布, 于是一个很的漂亮想法是:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态x0出发沿着马氏链转移, 得到一个转移序列 x0,x1,x2,⋯xn,xn+1⋯,, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本xn,xn+1⋯。
这个绝妙的想法在1953年被 Metropolis想到了,为了研究粒子系统的平稳性质, Metropolis 考虑了物理学中常见的波尔兹曼分布的采样问题,首次提出了基于马氏链的蒙特卡罗方法,即Metropolis算法,并在最早的计算机上编程实现。Metropolis 算法是首个普适的采样方法,并启发了一系列 MCMC方法,所以人们把它视为随机模拟技术腾飞的起点。 Metropolis的这篇论文被收录在《统计学中的重大突破》中, Metropolis算法也被遴选为二十世纪的十个最重要的算法之一。
改进变种:Metropolis-Hastings 算法
我们接下来介绍的MCMC 算法是 Metropolis 算法的一个改进变种,即常用的 Metropolis-Hastings 算法。

Gibbs Sampling
对于,由于接受率 α的存在(通常 α<1), 以上 Metropolis-Hastings 算法的效率不够高。能否找到一个转移矩阵Q使得接受率 α=1 呢?


[Bayes] MCMC (Markov Chain Monte Carlo)的更多相关文章
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...
- Markov Chain Monte Carlo Simulation using C# and MathNet
Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document i ...
- 为什么要用Markov chain Monte Carlo (MCMC)
马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distrib ...
- Monte Carlo Approximations
准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...
- History of Monte Carlo Methods - Part 1
History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...
- Monte Carlo方法简介(转载)
Monte Carlo方法简介(转载) 今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...
随机推荐
- python函数调用时参数传递方式
python函数调用时参数传递方式 C/C++参数传递方式 对于C程序员来说,我们都知道C在函数调用时,采用的是值传递,即形参和实参分配不同的内存地址,在调用时将实参的值传给实参,在这种情况下,在函数 ...
- 洛谷P3629 [APIO2010]巡逻(树的直径)
如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...
- docker学习6-docker-compose容器集群编排
前言 实际工作中我们部署一个应用,一般不仅仅只有一个容器,可能会涉及到多个,比如用到数据库,中间件MQ,web前端和后端服务,等多个容器. 我们如果一个个去启动应用,当项目非常多时,就很难记住了,所有 ...
- SQL中and和or的区别是?
今天有这样得一个需求,如果登陆人是客服的话,会查询订单是’该客服’以及还没有匹配客服的,刚开始想的是直接在sql语句上拼写 or assigned_id is null 的,测试了一下发现这样的 ...
- Mybatis框架-@Param注解
回顾一下上一个小demo中存在的问题,是是根据用户的id修改用户的密码,我们只是修改了用户的密码,结果我们的在写接口方法的时候掺入的参数确实一个User对象,这样让别人看到我们的代码真的是很难读懂啊! ...
- (生鲜项目)05. RESTful api, 和 VUE
第一步: 什么是 RESTful api 总结: 使用http协议作为介质, 达到客户端修改服务器端资源的目的, 服务器只需要提供指定的api接口, 客户端根据http协议中的post/get/put ...
- LeetCode 875. Koko Eating Bananas
原题链接在这里:https://leetcode.com/problems/koko-eating-bananas/ 题目: Koko loves to eat bananas. There are ...
- RESTful API Design: 13 Best Practices to Make Your Users Happy
RESTful API Design: 13 Best Practices to Make Your Users Happy First step to the RESTful way: make s ...
- 2019.12.07 java基础
编译时报错,叫做编译失败 class Demo01 { public static void main(String[] args) { int a; a=12; System.out.println ...
- bootstrap导航条组件
一.导航条模板(官方文档) <nav class="navbar navbar-default"> <div class="container-flui ...