Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted array: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
/ \
-3 9
/ /
-10 5 

给定一个升序排序的数组,把它转成一个高度平衡的二叉搜索树(两个子树的深度相差不大于1)。

二叉搜索树的特点:

1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
3. 任意节点的左、右子树也分别为二叉查找树;
4. 没有键值相等的节点。

中序遍历二叉查找树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉查找树变成一个有序序列,构造树的过程即为对无序序列进行查找的过程。

反过来,根节点就是有序数组的中间点,从中间点分开为左右两个有序数组,再分别找出两个数组的中间点作为左右两个子节点,就是二分查找法。

解法1:二分法BS + 递归Recursive

解法2: 二分法 + 迭代

Java: Recursive

public TreeNode sortedArrayToBST(int[] num) {
if (num.length == 0) {
return null;
}
TreeNode head = helper(num, 0, num.length - 1);
return head;
} public TreeNode helper(int[] num, int low, int high) {
if (low > high) { // Done
return null;
}
int mid = (low + high) / 2;
TreeNode node = new TreeNode(num[mid]);
node.left = helper(num, low, mid - 1);
node.right = helper(num, mid + 1, high);
return node;
}

Java: Iterative  

public class Solution {

    public TreeNode sortedArrayToBST(int[] nums) {

        int len = nums.length;
if ( len == 0 ) { return null; } // 0 as a placeholder
TreeNode head = new TreeNode(0); Deque<TreeNode> nodeStack = new LinkedList<TreeNode>() {{ push(head); }};
Deque<Integer> leftIndexStack = new LinkedList<Integer>() {{ push(0); }};
Deque<Integer> rightIndexStack = new LinkedList<Integer>() {{ push(len-1); }}; while ( !nodeStack.isEmpty() ) {
TreeNode currNode = nodeStack.pop();
int left = leftIndexStack.pop();
int right = rightIndexStack.pop();
int mid = left + (right-left)/2; // avoid overflow
currNode.val = nums[mid];
if ( left <= mid-1 ) {
currNode.left = new TreeNode(0);
nodeStack.push(currNode.left);
leftIndexStack.push(left);
rightIndexStack.push(mid-1);
}
if ( mid+1 <= right ) {
currNode.right = new TreeNode(0);
nodeStack.push(currNode.right);
leftIndexStack.push(mid+1);
rightIndexStack.push(right);
}
}
return head;
} }  

Python:

class Solution(object):
def sortedArrayToBST(self, nums):
"""
:type nums: List[int]
:rtype: TreeNode
"""
return self.sortedArrayToBSTRecu(nums, 0, len(nums)) def sortedArrayToBSTRecu(self, nums, start, end):
if start == end:
return None
mid = start + self.perfect_tree_pivot(end - start)
node = TreeNode(nums[mid])
node.left = self.sortedArrayToBSTRecu(nums, start, mid)
node.right = self.sortedArrayToBSTRecu(nums, mid + 1, end)
return node def perfect_tree_pivot(self, n):
"""
Find the point to partition n keys for a perfect binary search tree
"""
x = 1
# find a power of 2 <= n//2
# while x <= n//2: # this loop could probably be written more elegantly :)
# x *= 2
x = 1 << (n.bit_length() - 1) # use the left bit shift, same as multiplying x by 2**n-1 if x // 2 - 1 <= (n - x):
return x - 1 # case 1: the left subtree of the root is perfect and the right subtree has less nodes
else:
return n - x // 2 # case 2 == n - (x//2 - 1) - 1 : the left subtree of the root
# has more nodes and the right subtree is perfect.

C++:

class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
return sortedArrayToBSTHelper(nums, 0, nums.size() - 1);
} private:
TreeNode *sortedArrayToBSTHelper(vector<int> &nums, int start, int end) {
if (start <= end) {
TreeNode *node = new TreeNode(nums[start + (end - start) / 2]);
node->left = sortedArrayToBSTHelper(nums, start, start + (end - start) / 2 - 1);
node->right = sortedArrayToBSTHelper(nums, start + (end - start) / 2 + 1, end);
return node;
}
return nullptr;
}
};  

C++:

/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *sortedArrayToBST(vector<int> &num) {
return sortedArrayToBST(num, 0 , num.size() - 1);
}
TreeNode *sortedArrayToBST(vector<int> &num, int left, int right) {
if (left > right) return NULL;
int mid = (left + right) / 2;
TreeNode *cur = new TreeNode(num[mid]);
cur->left = sortedArrayToBST(num, left, mid - 1);
cur->right = sortedArrayToBST(num, mid + 1, right);
return cur;
}
};

  

类似题目:

[LeetCode] 109. Convert Sorted List to Binary Search Tree 把有序链表转成二叉搜索树

All LeetCode Questions List 题目汇总

[LeetCode] 108. Convert Sorted Array to Binary Search Tree 把有序数组转成二叉搜索树的更多相关文章

  1. LeetCode 108. Convert Sorted Array to Binary Search Tree (有序数组转化为二叉搜索树)

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 题目 ...

  2. [LeetCode] 109. Convert Sorted List to Binary Search Tree 把有序链表转成二叉搜索树

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  3. 108 Convert Sorted Array to Binary Search Tree 将有序数组转换为二叉搜索树

    将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树.此题中,一个高度平衡二叉树是指一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1.示例:给定有序数组: [-10,-3,0,5,9], ...

  4. 37. leetcode 108. Convert Sorted Array to Binary Search Tree

    108. Convert Sorted Array to Binary Search Tree 思路:利用一个有序数组构建一个平衡二叉排序树.直接递归构建,取中间的元素为根节点,然后分别构建左子树和右 ...

  5. [LeetCode] 108. Convert Sorted Array to Binary Search Tree ☆(升序数组转换成一个平衡二叉树)

    108. Convert Sorted Array to Binary Search Tree 描述 Given an array where elements are sorted in ascen ...

  6. LeetCode 108. Convert Sorted Array to Binary Search Tree (将有序数组转换成BST)

    108. Convert Sorted Array to Binary Search Tree Given an array where elements are sorted in ascendin ...

  7. leetcode 108. Convert Sorted Array to Binary Search Tree 、109. Convert Sorted List to Binary Search Tree

    108. Convert Sorted Array to Binary Search Tree 这个题使用二分查找,主要要注意边界条件. 如果left > right,就返回NULL.每次更新的 ...

  8. [LeetCode] Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 这道 ...

  9. Java for LeetCode 108 Convert Sorted Array to Binary Search Tree

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 解题 ...

随机推荐

  1. 代码优化 - 求数组中的第 K 个最大元素

    题目要求: 解法一: 直接用 sort 从大到小排序,取第 k 个 var findKthLargest = function (nums, k) { nums.sort((a, b) => { ...

  2. python基础---python环境搭建windows版

    Python3.7.1标准安装 1.官网下载 官网地址:https://www.python.org/downloads/ 下载3.7.1 下载64/32bitwindows安装文件,下图x86-64 ...

  3. D. Zero Quantity Maximization ( Codeforces Round #544 (Div. 3) )

    题目链接 参考题解 题意: 给你 整形数组a 和 整形数组b ,要你c[i] = d * a[i] + b[i], 求  在c[i]=0的时候  相同的d的数量 最多能有几个. 思路: 1. 首先打开 ...

  4. c++的boost库

    c++ 的boost库的理解? 参考:http://zh.highscore.de/cpp/boost/introduction.html https://www.cnblogs.com/lidabo ...

  5. test20190904 JKlover

    100+100+100=300.最后十分钟极限翻盘. 树链剖分 给一棵以1为根的有根树,开始只有1有标记. 每次操作可以给某个点打上标记,或者询问从某个点开始向上跳,遇到的第一个有标记的点. 对于 1 ...

  6. HttpContext对象下的属性Application、Cache、Request、Response、Server、Session、User

    概述: HttpContext封装关于单个HTTP请求的所有HTTP特定信息. HttpContext基于HttpApplication的处理管道,由于HttpContext对象贯穿整个处理过程,所以 ...

  7. c++中关联容器set的使用

    c++中set的用法 #include<iostream> #include<vector> #include<algorithm> #include<set ...

  8. gcc分步骤编译的记录

  9. 002-官网安装openstack之-安装基础服务

    安装openstack基础服务 1.控制节点安装时间同步服务(chrony) (1)时间同步大体来说有两种方式: 一种是自己搭建时间同步服务器,各个需要同步时间的节点,与其同步时间 另一种则是使用nt ...

  10. AOP_原理

    什么是AOPAOP(Aspect-OrientedProgramming,面向方面编程),可以说是OOP(Object-Oriented Programing,面向对象编程)的补充和完善.OOP引入封 ...