一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m和n的值不超过100。

示例1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

解法一: 动态规划

思想算法:

  1. 如果第一个格子点是obstacleGrid[0][0] 是 1, 说明有障碍物,那么机器人就不能做任何的移动,我们就直接返回0;
  2. 否则如果obstacleGrid[0][0] 是 0, 我们初始化这个值为1,然后继续算法;
  3. 遍历第一行,如果有个格子是为1,说明当前节点有障碍物,没有路径可走,设置为0;否则设这个值是前一个节点的值,如下:

    let verticalValue = (obstacleGrid[0][i] == 0 && dp[0][i - 1] == 1) ? 1 : 0

    dp[0].append(verticalValue)

  4. 遍历第一列,如果有一个格子初始值是1, 说明当前节点为障碍物,没有路径可以通过, 设置为0; 否则这个值为前一个节点的值
    (dp[i-1][0]) == 0 || (obstacleGrid[i][0] == 1)判断为0或者1,加入进去
  5. 现在从obstacleGrid[1][1]开始遍历整个数组,如果某个个字初始化不包含任何障碍物,就把值赋予上方和左侧两个格子方案之和
    let value = dp[i - 1][j] + dp[i][j - 1]
    dp[i].append(value)
    不包含障碍物上面.
  6.  如果这个点是障碍物设置为0, 保证对后面的路径不产生贡献.
 
代码如下
func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int {
guard obstacleGrid.count > else {return -}
let rowLength = obstacleGrid.count //显示多少行
let verticalLength = obstacleGrid[].count //显示多少列
var dp = [[Int]]()
if obstacleGrid[][] == {//1代表有障碍
return
} //初始化第一个元素,也就是dp[0][0]
var rowArr = [Int]()
for i in ..<rowLength {
if i == {
for j in ..<verticalLength {
if j == {
rowArr.append()
}
}
}
}
dp.append(rowArr) //初始化第一列
for i in ..<rowLength {
var vertical = [Int]()
let rowValue = (obstacleGrid[i][] == && dp[i-][] == ) ? :
for j in ..<verticalLength {
if j == {
vertical.append(rowValue)
}
}
dp.append(vertical)
}
//初始化第一行
for i in ..<verticalLength {
let verticalValue = (obstacleGrid[][i] == && dp[][i - ] == ) ? :
dp[].append(verticalValue)
}
//初始化其它元素
for i in ..<rowLength {
for j in ..<verticalLength {
if obstacleGrid[i][j] == {
let value = dp[i - ][j] + dp[i][j - ]
dp[i].append(value)
} else {
dp[i].append()
}
}
}
return dp[rowLength-][verticalLength-]
}

上面运行代码如下:

上面就是不同路径关于动态规划下,swift完整代码,可以直接运行出来,代码也有注释,以后有新的解法,会持续更新,希望对大家有所帮助!!!

 
 

不同路径II --动态规划的更多相关文章

  1. [LeetCode] 63. 不同路径 II ☆☆☆(动态规划)

    描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在 ...

  2. Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)

    Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...

  3. lintcode-115-不同的路径 II

    115-不同的路径 II "不同的路径" 的跟进问题: 现在考虑网格中有障碍物,那样将会有多少条不同的路径? 网格中的障碍和空位置分别用 1 和 0 来表示. 注意事项 m 和 n ...

  4. LeetCode:不同路径&不同路径II

    不同路径一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 问 ...

  5. 【BZOJ2306】幸福路径(动态规划,倍增)

    [BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...

  6. Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)

    Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...

  7. lintcode_115_不同的路径 II

    不同的路径 II   描述 笔记 数据 评测 "不同的路径" 的跟进问题: 现在考虑网格中有障碍物,那样将会有多少条不同的路径? 网格中的障碍和空位置分别用 1 和 0 来表示. ...

  8. LintCode_114 不同的路径,115 不同的路径 II

    题目 有一个机器人的位于一个M×N个网格左上角(下图中标记为'Start'). 机器人每一时刻只能向下或者向右移动一步.机器人试图达到网格的右下角(下图中标记为'Finish'). 问有多少条不同的路 ...

  9. Java实现 LeetCode 63 不同路径 II(二)

    63. 不同路径 II 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在 ...

随机推荐

  1. 【团队项目1】 团队展示&选题

    一.团队展示 1. 队名:这次稳了 2. 队员: 莫少政 3117004667 (队长) 黄思扬 3117004657 余泽端 3117004679 江海灵 3117004658 温治乾 311700 ...

  2. ORM之EF初识

    之前有写过ef的codefirst,今天来更进一步认识EF! 一:EF的初步认识 ORM(Object Relational Mapping):对象关系映射,其实就是一种对数据访问的封装.主要实现流程 ...

  3. 性能测试基础---ant集成2

    ·自定义报告模板:因为默认的ant提供的报告模板,是没有tps和90%line这样的数据.但是在实际工作中,这两个统计数据又是必须的,那么我们可以通过自定义(修改)的方式来进行修改,达到我们的目的. ...

  4. C#中的函数(三)参数传递及返回值

    接前面二篇,继续开始新的研究 前面忘了说什么是主调函数与被调函数 主调函数:执行调用其它函数语句所在的函数 被调函数:被其它函数所调用的函数 简单说就是一个是发起调用者,另一个是被调用者 写个小例子说 ...

  5. 开始Golang之旅了

  6. Mongo DB 下载安装

    目录 1.下载MongoDB 2.启动MongoDB 3.添加环境变量,添加启动服务 4.MongoDB操作 1.创建用户以及权限控制: 1.下载MongoDB MongoDB的官网 简单下载方法 w ...

  7. 安装Ruby 2.3.0

    安装最新的redis集群需要用到的rb脚本要ruby2.3.0版本,centos7默认的是2.0.0,很显然报错不行,所以安装呗,使用rvm安装,安装步骤如下: yum -y install curl ...

  8. Nuxt.js中scss公用文件(不使用官方插件style-resources)

    项目多多少少应该都遇到有公用文件这种情况,比如说偶尔某一天产品来找你,能不能明天把网站的这个颜色给我改下?第二天再来给我换回来? 如果再css2.x时代,不使用css预处理技术,这一改只能“查找替换” ...

  9. Java 解压 zip 文件

    代码如下 package test_java; import java.io.File; import java.io.FileOutputStream; import java.io.IOExcep ...

  10. terminal使用kubectl.exe delete pod podname删不掉

    今天通过kubernetes的dashboard进行删除有问题或者重启次数太多的pod,发现删不掉,然后就在本地尝试使用terminal进行删除 先获取指定namespace下的所有的pod,根据st ...