You are given a connected weighted graph with n vertices and m edges. The graph doesn't contain loops nor multiple edges. Consider some edge with id i. Let's determine for this edge the maximum integer weight we can give to it so that it is contained in all minimum spanning trees of the graph if we don't change the other weights.

You are to determine this maximum weight described above for each edge. You should calculate the answer for each edge independently, it means there can't be two edges with changed weights at the same time.

Input

The first line contains two integers n and m (2 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105), where n and m are the number of vertices and the number of edges in the graph, respectively.

Each of the next m lines contains three integers uv and c (1 ≤ v, u ≤ nv ≠ u, 1 ≤ c ≤ 109) meaning that there is an edge between vertices u and v with weight c.

Output

Print the answer for each edge in the order the edges are given in the input. If an edge is contained in every minimum spanning tree with any weight, print -1 as the answer.

Examples
input
4 4
1 2 2
2 3 2
3 4 2
4 1 3
output
2 2 2 1 
input
4 3
1 2 2
2 3 2
3 4 2
output
-1 -1 -1 

  题目大意 给定一个无向连通带权图,求每条边在所有最小生成树中的最大权值(如果可以无限大就输出-1)。

  对于求1条边在无向连通图带权图的所有最小生成树中的最大权值可以用二分再用Kruskal进行check,但是如果每条边都这么做就会T掉。

  所以考虑整体二分,然而并不行。

  所以考虑先跑一遍Kruskal,然后分类讨论一下:

  1)考虑一条非树边可以取的最大权值。

  考虑把它加入树中,那么会形成1个环,为了保证最小生成树的边权和最小,方法是删掉环上权值最大的一条边。

  所以找到它连接的两端在树上形成的简单路径中边权最大的一个,它的边权-1就是这条非树边的答案。

  这个操作可以用树链剖分或者倍增解决。

  2)考虑一条树边可以取到的最大权值

  具体考虑一条树边会比较难做(不过好像有同学设计了时间戳把它搞定了),但是对于每条非树边都会对它连接的两端在树上形成的简单路径上的所有边有个边权的限制,就是不能超过它的边权 - 1,否则会被它替换掉。

  这个区间取min操作可以用树链剖分。然而考试的时候我脑子瓦特了,觉得线段树不能区间取min(可能是脑补了一个求和操作)

  然后想到了只有到最后会一起求得树边的答案,于是想到了差分。

  为了维护这个最小值,又想到了可并堆。由于要删除,所以可以用下面这个方法构造可删堆(一位dalao的博客提到这个黑科技,我就学习了一下)

    再开一个堆记录要删除的元素,如果两个堆堆顶元素相同,则都弹出堆顶元素。

  于是便又有一个名为树差分 + 可并堆的zz做法。

Code

 /**
* Codeforces
* Problem#828F
* Accepted
* Time: 420ms
* Memory: 57864k
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <bitset>
#ifdef WIN32
#define Auto "%I64d"
#else
#define Auto "%lld"
#endif
using namespace std;
typedef bool boolean;
#define ll int
#define smin(_a, _b) _a = min(_a, _b)
#define smax(_a, _b) _a = max(_a, _b)
#define fi first
#define sc second
const signed int inf = (signed) (~0u >> );
const signed ll llf = (signed ll) (~0ull >> );
typedef pair<int, int> pii; template<typename T>
inline void readInteger(T& u) {
static char x;
while(!isdigit(x = getchar()));
for(u = x - ''; isdigit(x = getchar()); u = u * + x - '');
} template<typename T>
class Matrix {
public:
T* p;
int row;
int col;
Matrix():p(NULL) { }
Matrix(int row, int col):row(row), col(col) {
p = new T[(row * col)];
} T* operator [] (int pos) {
return p + (pos * col);
}
};
#define matset(a, i, s) memset(a.p, i, sizeof(s) * a.row * a.col) typedef class Edge {
public:
int u;
int v;
int w;
boolean seced;
int rid; Edge(int u = , int v = , int w = ):u(u), v(v), w(w), seced(false) { } boolean operator < (Edge b) const {
return w < b.w;
}
}Edge; typedef class Node {
public:
int val;
Node *nxt[]; Node(int val = inf):val(val) { nxt[] = nxt[] = NULL; }
}Node; typedef pair<Node*, Node*> pnn;
#define limit 1000000 Node pool[limit];
Node *top = pool; Node* newnode(int x) {
if(top == pool + limit)
return new Node(x);
*top = Node(x);
return top++;
} Node* merge(Node* &l, Node* r) {
if(l == NULL) return r;
if(r == NULL) return l;
if(l->val > r->val) swap(l, r);
int p = rand() % ;
l->nxt[p] = merge(l->nxt[p], r);
return l;
} int n, m;
Edge* edge;
int* res;
int* ans; inline void init() {
readInteger(n);
readInteger(m);
edge = new Edge[(m + )];
for(int i = ; i <= m; i++) {
readInteger(edge[i].u);
readInteger(edge[i].v);
readInteger(edge[i].w);
edge[i].rid = i;
}
} int *f; int find(int x) {
return (f[x] != x) ? (f[x] = find(f[x])) : (x);
} vector<int> *g;
vector<int> *add;
vector<int> *del; inline void Kruskal() {
f = new int[(n + )];
g = new vector<int>[(n + )];
for(int i = ; i <= n; i++)
f[i] = i;
sort(edge + , edge + m + );
int fin = ;
for(int i = ; i <= m && fin < n - ; i++) {
if(find(edge[i].u) != find(edge[i].v)) {
f[find(edge[i].u)] = find(edge[i].v);
g[edge[i].u].push_back(i);
g[edge[i].v].push_back(i);
edge[i].seced = true;
fin++;
}
}
} const int BZMAX = ;
int* dep;
Matrix<int> bz;
Matrix<int> bzm; void dfs1(int node, int fa, int lastv) {
dep[node] = dep[fa] + ;
bz[node][] = fa;
bzm[node][] = lastv;
for(int i = ; i < BZMAX; i++)
bz[node][i] = bz[bz[node][i - ]][i - ], bzm[node][i] = max(bzm[node][i - ], bzm[bz[node][i - ]][i - ]);
for(int i = ; i < (signed)g[node].size(); i++) {
if(!edge[g[node][i]].seced) continue;
int e = (edge[g[node][i]].u == node) ? (edge[g[node][i]].v) : (edge[g[node][i]].u);
if(e == fa) continue;
dfs1(e, node, edge[g[node][i]].w);
}
} pii lca(int u, int v) {
if(dep[u] < dep[v]) swap(u, v);
int rtmax = ;
int ca = dep[u] - dep[v];
for(int i = ; i < BZMAX; i++)
if(ca & ( << i)) {
smax(rtmax, bzm[u][i]);
u = bz[u][i];
}
if(u == v) return pii(u, rtmax);
for(int i = BZMAX - ; ~i; i--) {
if(bz[u][i] != bz[v][i]) {
smax(rtmax, bzm[u][i]);
smax(rtmax, bzm[v][i]);
u = bz[u][i];
v = bz[v][i];
}
}
smax(rtmax, bzm[u][]);
smax(rtmax, bzm[v][]);
return pii(bz[u][], rtmax);
} pair<Node*, Node*> dfs2(int node, int fa, int tofa) {
Node* rt = NULL;
Node* dl = NULL;
for(int i = ; i < (signed)g[node].size(); i++) {
if(!edge[g[node][i]].seced) continue;
int e = (edge[g[node][i]].u == node) ? (edge[g[node][i]].v) : (edge[g[node][i]].u);
if(e == fa) continue;
pnn ap = dfs2(e, node, g[node][i]);
rt = merge(rt, ap.fi);
dl = merge(dl, ap.sc);
}
for(int i = ; i < (signed)add[node].size(); i++)
rt = merge(rt, newnode(add[node][i]));
for(int i = ; i < (signed)del[node].size(); i++)
dl = merge(dl, newnode(del[node][i]));
while(dl && rt->val == dl->val) {
rt = merge(rt->nxt[], rt->nxt[]);
rt = merge(rt->nxt[], rt->nxt[]);
dl = merge(dl->nxt[], dl->nxt[]);
}
res[tofa] = (!rt) ? (-) : (rt->val);
return pnn(rt, dl);
} inline void solve() {
res = new int[(m + )];
dep = new int[(n + )];
bz = Matrix<int>(n + , BZMAX);
bzm = Matrix<int>(n + , BZMAX);
dep[] = ;
for(int i = ; i < BZMAX; i++)
bz[][i] = bzm[][i] = ;
dfs1(, , );
add = new vector<int>[(n + )];
del = new vector<int>[(n + )];
for(int i = ; i <= m; i++) {
if(edge[i].seced) continue;
int u = edge[i].u, v = edge[i].v;
pii l = lca(u, v);
res[i] = l.sc - ;
add[u].push_back(edge[i].w - );
add[v].push_back(edge[i].w - );
del[l.fi].push_back(edge[i].w - );
}
dfs2(, , );
ans = new int[(m + )];
for(int i = ; i <= m; i++)
ans[edge[i].rid] = res[i];
for(int i = ; i <= m; i++)
printf("%d ", ans[i]);
} int main() {
srand();
init();
Kruskal();
solve();
return ;
}

Codeforces 828F Best Edge Weight - 随机堆 - 树差分 - Kruskal - 倍增算法的更多相关文章

  1. codeforces 1017C - Cloud Computing 权值线段树 差分 贪心

    https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...

  2. 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

    [题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...

  3. CF#633 D. Edge Weight Assignment

    D. Edge Weight Assignment 题意 给出一个n个节点的树,现在要为边赋权值,使得任意两个叶子节点之间的路径权值异或和为0,问最多,最少有多少个不同的权值. 题解 最大值: 两个叶 ...

  4. CF 633 div1 1338 B. Edge Weight Assignment 构造

    LINK:Edge Weight Assignment 这场当时没打 看到这个B题吓到我了 还好当时没打. 想了20min才知道怎么做 而且还不能证明. 首先考虑求最小. 可以发现 如果任意两个叶子节 ...

  5. cf827D Best Edge Weight (kruskal+倍增lca+并查集)

    先用kruskal处理出一个最小生成树 对于非树边,倍增找出两端点间的最大边权-1就是答案 对于树边,如果它能被替代,就要有一条非树边,两端点在树上的路径覆盖了这条树边,而且边权不大于这条树边 这里可 ...

  6. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

  7. [Codeforces 280D]k-Maximum Subsequence Sum(线段树)

    [Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...

  8. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  9. treap(堆树)

    # 2018-09-27 17:35:58 我实现的这个treap不能算是堆.有问题 最近对堆这种结构有点感兴趣,然后想用指针的方式实现一个堆而不是利用数组这种结构,于是自己想到了一个用二叉树结构实现 ...

随机推荐

  1. python基础05day--函数

    一 函数知识体系 什么是函数?为什么要用函数?函数的分类:内置函数与自定义函数如何自定义函数 语法 定义有参数函数,及有参函数的应用场景 定义无参数函数,及无参函数的应用场景 定义空函数,及空函数的应 ...

  2. Fedora 31 Beta 发布

    Matthew Miller宣布发布Fedora 31 Beta.它不仅准时,而且还带来许多激动人心的更新.Fedora 31 Beta附带全新的GNOME 3.34桌面及其许多改进/功能,这对于更好 ...

  3. Spring的配置文件找不到元素 'beans' 的声明

    Spring的配置文件找不到元素 'beans' 的声明 一般是由Spring的版本导致的,你可以尝试使用如下的某一种. <?xml version="1.0" encodi ...

  4. CSS怎么隐藏滚动条(三种方法)

    xhtml中隐藏滚动条在用ie6浏览有框架的xhtml页面的时候,默认会水平和垂直滚动条会一起出现,这是ie6的一个bug,在firefox上是正常的,出现的原因是其对XHTML 1.0 transi ...

  5. JavaScript 之 对话框

    一.alert()  语法格式: alert("hello javascript"); 该对话框是弹出一个提示信息. Chrome 浏览器的效果. 二.prompt() 语法格式: ...

  6. Busness Client 客户端配置

    1,打开Busness Client,点击新建按钮: 2,选择New System Connection(SAP Logon),这个是配置GUI登陆的,就相当于用BC登陆GUI. 这里就和GUI的配置 ...

  7. HTTP 强制缓存和协商缓存

    Web 缓存能够减少延迟与网络阻塞,进而减少显示某个资源所用的时间.借助 HTTP 缓存,Web 站点变得更具有响应性. 缓存优点: 减少不必要的数据传输,节省带宽 减少服务器负担,提升网站性能 加快 ...

  8. 【漏洞复现】Apache Solr via Velocity template远程代码执行

    0x01 概述 Solr简介 Apache Solr 是一个开源的企业级搜索服务器.Solr 使用 Java 语言开发,主要基于 HTTP 和 Apache Lucene 实现.Apache Solr ...

  9. JAVA分页工具类

    最近写了一个代码生成工具,分享下该工具下的分页工具 一.分页工具类 package com.qy.code.api.page; import java.io.Serializable; import ...

  10. zabbix--自定义监控项vsftpd

    Zabbix 自定义监控项之监控 vsftpd zabbix 提供了很多监控选择,功能丰富,我们还可以根据自定义来监控想要监控一些日常的服务等. 说明: 此处我们通过监控 ftp (自定义命令),实现 ...