洛谷P2312 解方程题解

题目描述

已知多项式方程:

\[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0
\]

求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整数)。

输入格式

输入共 \(n + 2\) 行。

第一行包含 \(2\) 个整数 \(n, m\) ,每两个整数之间用一个空格隔开。

接下来的 \(n+1\) 行每行包含一个整数,依次为 \(a_0,a_1,a_2\ldots a_n\).

输出格式

第一行输出方程在 \([1,m]\) 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在 [1,m][1,m] 内的一个整数解。

输入输出样例

输入 #1 复制

2 10

1

-2

1

输出 #1 复制

1

1

输入 #2 复制

2 10

2

-3

1

输出 #2 复制

2

1

2

输入 #3 复制

2 10

1

3

2

输出 #3 复制

0

说明/提示

对于 $ 30 % $ 的数据:\(0<n\le 2\),\(|a_i|\le 100\),\(a_n≠0\),\(m<1000\)

对于 $ 50 % $ 的数据:\(0<n\le 100,|a_i|\le 10^{100},a_n≠0,m<1000\)

对于 $ 70 % $ 的数据:\(0<n\le 100,|a_i|\le 10^{10000},a_n≠0,m<10^4\)。

对于 $ 100 % $ 的数据:\(0<n\le 100,|a_i|\le 10^{10000},a_n≠0,m<10^6\)。

解析:

秦九韶公式 + 快读

输入要注意,因为输入的\(a[i]\)范围比较大,

所以就对一个质数取模

从\(1\)到\(m\)进行枚举,枚举的是\(x\),

然后利用秦九韶公式进行求解

如果返回的值是\(0\),那么就记录

反之继续。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <queue>
#include <stack>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iomanip>
#define Max 105
#define re register
#define D double
#define int long long
int n,m,a[Max],ans = 0, Ans[1000012];
const int mod = 19260817;
int read() {
char ch = getchar(); int f = 1, s = 0;
while(ch < '0' || ch > '9') {
if(ch == '-') f = -1;
ch =getchar();
}
while(ch >= '0' && ch <= '9') {
s = (10 * s + ch - '0') % mod;
ch = getchar();
}
return s * f;
}
int work(int x) {
int ANS = 0;
for(re int i = n ; i >= 1 ; -- i)
ANS = ((ANS + a[i]) * x)% mod;
ANS = (ANS + a[0]) % mod;
return ANS;
}
void Main() {
scanf("%lld%lld",&n,&m);
for(re int i = 0; i <= n; ++ i) a[i] = read();
for(re int i = 1; i <= m; ++ i)
if(work(i) == 0) ans ++, Ans[ans] = i;
printf("%lld\n",ans);
for(re int i = 1; i <= ans; ++ i) printf("%lld\n",Ans[i]);
}
signed main() {
Main();
return 0;
}

洛谷P2312 解方程题解的更多相关文章

  1. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  2. 洛谷P2312解方程题解

    题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...

  3. 洛谷 P2312 解方程 解题报告

    P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...

  4. 洛谷 P2312 解方程

    题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...

  5. [NOIP2014] 提高组 洛谷P2312 解方程

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  6. 2018.11.02 洛谷P2312 解方程(数论)

    传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...

  7. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  8. 洛谷P2312解方程

    传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...

  9. 洛谷P2312 解方程(暴力)

    题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...

随机推荐

  1. Mysql获取字符串中的数字函数方法和调用

    )) ) BEGIN ; ) default ''; set v_length=CHAR_LENGTH(Varstring); DO )) )) ) THEN )); END IF; ; END WH ...

  2. WPF USB设备采集开源工具介绍

    最近项目需要需要试试采集电脑USB 设备信息 找到了 开源 示例 代码非常好  公共库也很友好  可能知名度太低   才4star https://github.com/vurdalakov/usbd ...

  3. java基础 抽象

    /** * 抽象方法:就是加上abstract关键字,并去掉大括号,分号结束 * 抽象类:抽象方法坐在的类,必须是抽象类.在class前家abstract即可 * * 如何使用抽象类和抽象方法: * ...

  4. 《高性能javascript》随笔

    1.css文件在head标签中引入,保证在渲染结构的时候进行样式渲染2.Js文件放在body的底部,确保在渲染dom树的时候不会出现js阻塞3.函数内的变量是访问速度最快的,全局变量的访问速度是最慢的 ...

  5. ML-对偶(Duality)问题初识

    Primal vs Dual 为什么要把原始问题(primal) 转为 对偶问题(dual), 主要原因在于, 求解方便吧大概. 对偶问题 原始问题和其对偶问题, 都是对看待同一个问题的,从不同角度, ...

  6. Ansible-ansible命令

    Ansible是用于执行"远程操作"的简单工具.该命令允许针对一组主机定义并运行单个任务剧本. 常用选项 说明 --ask-vault-pass 请求保险库密码 --become- ...

  7. 【Netty】初识Netty

    一.为什么会出现Netty 之前我们使用通用的应用程序或库来相互通信.例如,我们经常使用HTTP客户机库从web服务器检索信息,并通过web服务调用远程过程调用.然而,通用协议或其实现有时伸缩性不是很 ...

  8. jenkins部署java项目(五)

    一.web server安装jdk+tomcat其中jdk可以为openjdk,版本1.8 1.1 安装jdk环境 方式一:直接使用yum安装openjdk # * 方式二:本地安装在oracle官网 ...

  9. Linux——Pxe+Nfs+Kickstart自动部署安装Centos7.4

    PXE简介 PXE,全名Pre-boot Execution Environment,预启动执行环境:通过网络接口启动计算机,不依赖本地存储设备(如硬盘)或本地已安装的操作系统:由Intel和Syst ...

  10. saas系统多租户数据隔离的实现(一)数据隔离方案

    0. 前言 前几天跟朋友聚会的时候,朋友说他们公司准备自己搞一套saas系统,以实现多个第三方平台的业务接入需求.聊完以后,实在手痒难耐,于是花了两天时间自己实现了两个saas系统多租户数据隔离实现方 ...