准备测试数据
 
为了提供不同时间粒度示例的演示,就需要测试数据。为了演示方便,本文提供一个测试数据表(登录信息数据表----LoginInfo),以及改变插入测试数据。该测试数据表就是简单记录每个用户每次的登路时间信息。
    
LoginInfo创建的脚本的T-SQL代码如下:
IF OBJECT_ID(N'dbo.LoginInfo', 'U') IS NOT NULL
BEGIN
    DROP TABLE dbo.LoginInfo;
END
GO
 
CREATE TABLE dbo.LoginInfo (
    LoginInfoID INT IDENTITY(1, 1) NOT NULL,
    UserID INT NOT NULL,
    LoginTime DATETIME NOT NULL
);
GO
 
IF OBJECT_ID(N'PK_U_CL_LoginInfo_LoginInfoID', N'PK') IS NULL
BEGIN
    ALTER TABLE [dbo].[LoginInfo] ADD CONSTRAINT [PK_U_CL_LoginInfo_LoginInfoID] PRIMARY KEY CLUSTERED 
    (
        [LoginInfoID] ASC
    )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 90) 
    ON [PRIMARY];
END
GO
 
IF NOT EXISTS (SELECT 1 FROM sys.indexes WHERE object_id = OBJECT_ID(N'[dbo].[LoginInfo]', N'U') AND name = N'IX_U_NCL_LoginInfo_LoginTime_UserID')
BEGIN
    CREATE NONCLUSTERED INDEX [IX_U_NCL_LoginInfo_LoginTime_UserID] ON [dbo].[LoginInfo]
    (
        [LoginTime] ASC,
        [UserID] ASC
    ) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 90)
    ON [PRIMARY];
END
GO
 
IF NOT EXISTS (SELECT 1 FROM sys.indexes WHERE object_id = OBJECT_ID(N'[dbo].[LoginInfo]', N'U') AND name = N'IX_NU_NCL_LoginInfo_UserID')
BEGIN
    CREATE NONCLUSTERED INDEX [IX_NU_NCL_LoginInfo_UserID] ON [dbo].[LoginInfo]
    (        
        [UserID] ASC
    ) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON, FILLFACTOR = 90)
    ON [PRIMARY];
END
GO
 
向LoginInfo数据表插入测试数据的T-SQL脚本如下:
-- 方法1、 模拟100个用户在2015年登陆时间的信息记录
TRUNCATE TABLE dbo.LoginInfo;
GO
 
DECLARE
    @intUserTotal AS INT,
    @dtmStartDateTime AS DATETIME,
    @dtmEndDateTime AS DATETIME;
SELECT
    @intUserTotal = 100,
    @dtmStartDateTime = '2015-01-01',
    @dtmEndDateTime = '2015-12-31';
 
-- 插入数据
INSERT INTO dbo.LoginInfo (
    UserID
    ,LoginTime
) SELECT
    T.Num AS UserID
    ,T2.LoginTime
FROM dbo.ufn_GetNums(1, @intUserTotal) AS T
    CROSS APPLY (
        SELECT CONVERT(DATETIME, CONVERT(VARCHAR(14), DATEADD(HOUR, Num * 4, @dtmStartDateTime), 120) + CAST(dbo.ufn_RandNum(0,59) AS VARCHAR(2)) + ':'+ CAST(dbo.ufn_RandNum(0,59) AS VARCHAR(2)) + '.'+ CAST(dbo.ufn_RandNum(0,997) AS VARCHAR(3)), 120) AS LoginTime
        FROM dbo.ufn_GetNums(0, DATEDIFF(HOUR, @dtmStartDateTime, @dtmEndDateTime) / 4)
    ) AS T2
ORDER BY T2.LoginTime ASC, T.Num ASC;
GO
 
-- 方法2、 模拟1000个用户在2015年登陆时间的信息记录
TRUNCATE TABLE dbo.LoginInfo;
GO
 
DECLARE
    @intUserTotal AS INT,
    @dtmStartDateTime AS DATETIME,
    @dtmEndDateTime AS DATETIME;
SELECT
    @intUserTotal = 1000,
    @dtmStartDateTime = '2015-01-01',
    @dtmEndDateTime = '2015-12-31';
 
SELECT
    T.Num AS UserID
    ,T2.LoginTime
FROM dbo.ufn_GetNums(1, @intUserTotal) AS T
    CROSS APPLY (
        SELECT CONVERT(DATETIME, CONVERT(VARCHAR(14), DATEADD(HOUR, Num * 4, @dtmStartDateTime), 120) + CAST(dbo.ufn_RandNum(0,59) AS VARCHAR(2)) + ':'+ CAST(dbo.ufn_RandNum(0,59) AS VARCHAR(2)) + '.'+ CAST(dbo.ufn_RandNum(0,997) AS VARCHAR(3)), 120) AS LoginTime
        FROM dbo.ufn_GetNums(0, DATEDIFF(HOUR, @dtmStartDateTime, @dtmEndDateTime) / 4)
    ) AS T2;
GO
 
注意:
1、以上填充测试数据提供了两个方法:一个是模拟100个用户的小数据,另一个是模拟1000个用户的稍大数据,时间段都是2015年的登录时间。
2、本文为了演示的方便采用了模拟100个用户的小数据。
3、填充测试数据使用了函数ufn_GetNums,请参SQL Server数字辅助表的实现
 
查看测试数据表中的数据,如下图:
 
注意:
1、以上截图仅仅显示很小部分的数据。
 
向测试数据表添加相关时间粒度字段列
 
向测试数据表中增加LoginDays、LoginMonths、LoginQuarters和LoginYears字段列,T-SQL脚本如下:
IF NOT EXISTS (SELECT 1 FROM sys.columns WHERE object_id = OBJECT_ID(N'dbo.LoginInfo', 'U') AND name = N'LoginDays')
BEGIN
    ALTER TABLE LoginInfo ADD LoginDays INT NOT NULL CONSTRAINT DF_LoginInfo_LoginDays DEFAULT 0;
END
GO
IF NOT EXISTS (SELECT 1 FROM sys.columns WHERE object_id = OBJECT_ID(N'dbo.LoginInfo', 'U') AND name = N'LoginMonths')
BEGIN
    ALTER TABLE LoginInfo ADD LoginMonths INT NOT NULL CONSTRAINT DF_LoginInfo_LoginMonths DEFAULT 0;
END
GO
IF NOT EXISTS (SELECT 1 FROM sys.columns WHERE object_id = OBJECT_ID(N'dbo.LoginInfo', 'U') AND name = N'LoginQuarters')
BEGIN
    ALTER TABLE LoginInfo ADD LoginQuarters INT NOT NULL CONSTRAINT DF_LoginInfo_LoginQuarters DEFAULT 0;
END
GO
IF NOT EXISTS (SELECT 1 FROM sys.columns WHERE object_id = OBJECT_ID(N'dbo.LoginInfo', 'U') AND name = N'LoginYears')
BEGIN
    ALTER TABLE LoginInfo ADD LoginYears SMALLINT NOT NULL CONSTRAINT DF_LoginInfo_LoginYears DEFAULT 0;
END
GO
 
查询测试数据表,如下图:
注意:
1、以上截图的仅仅显示部分数据。
 
修改新增字段值,相关的脚本如下:
UPDATE dbo.LoginInfo
SET LoginDays = dbo.ufn_Days(LoginTime)
    ,LoginMonths = dbo.ufn_Months(LoginTime)
    ,LoginQuarters = dbo.ufn_Quarters(LoginTime)
    ,LoginYears = dbo.ufn_Years(LoginTime)
WHERE LoginDays = 0
    AND LoginMonths = 0
    AND LoginQuarters = 0
    AND LoginYears = 0;
GO
注意:
1、以上新增的字段没有创建相应的索引。
2、以上使用了4个函数:ufn_Days、ufn_Months、ufn_Quarters和ufn_Years,请参考SQL Server时间粒度系列----第7节日历数据表详解
 
再次查看测试数据,如下图:
注意:
1、以上截图仅仅显示部分数据。
 
基于日月季年统计汇总的演示
 
基于日统计汇总,T-SQL如下:
-- 基于日统计汇总
-- 方法1、传统的使用
SELECT CONVERT(CHAR(10), LoginTime, 120) AS LoginDayDateFormat, COUNT(1) AS DayLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY CONVERT(CHAR(10), LoginTime, 120)
ORDER BY LoginDayDateFormat ASC;
GO
-- 方法2、使用时间粒度转换函数
SELECT dbo.ufn_Days2Date(dbo.ufn_Days(LoginTime)) AS LoginDayDate, COUNT(1) AS DayLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY dbo.ufn_Days(LoginTime)
ORDER BY LoginDayDate ASC;
GO
-- 方法3、使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Days2Date(LoginDays) AS LoginDayDate, COUNT(1) AS DayLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY LoginDays
ORDER BY LoginDays ASC;
GO
-- 方法4、嵌套查询与使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Days2Date(T.LoginDays) AS LoginDayDate, T.DayLoginTimesTotal
FROM (
    SELECT LoginDays, COUNT(1) AS DayLoginTimesTotal
    FROM dbo.LoginInfo
    GROUP BY LoginDays
) AS T
ORDER BY LoginDays ASC;
GO
查询以上四个方法的图形实际执行计划,如下图:
 
基于月统计汇总,T-SQL如下:
-- 基于月统计汇总
-- 方法1、传统的使用
SELECT CONVERT(CHAR(7), LoginTime, 120) AS LoginMonthDateFormat, COUNT(1) AS MonthLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY CONVERT(CHAR(7), LoginTime, 120)
ORDER BY LoginMonthDateFormat ASC;
GO
-- 方法2、使用时间粒度转换函数
SELECT dbo.ufn_Months2Date(dbo.ufn_Months(LoginTime)) AS LoginMonthBasedate, COUNT(1) AS MonthLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY dbo.ufn_Months(LoginTime)
ORDER BY LoginMonthBasedate ASC;
GO
-- 方法3、使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Months2Date(LoginMonths) AS LoginMonthBasedate, COUNT(1) AS MonthLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY LoginMonths
ORDER BY LoginMonths ASC;
GO
-- 方法4、嵌套查询与使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Months2Date(T.LoginMonths) AS LoginMonthBasedate, T.MonthLoginTimesTotal
FROM (
    SELECT LoginMonths, COUNT(1) AS MonthLoginTimesTotal
    FROM dbo.LoginInfo
    GROUP BY LoginMonths
) AS T
ORDER BY LoginMonths ASC;
GO
查询以上四个方法的图形实际执行计划,如下图:
 
基于季统计汇总,T-SQL如下:
-- 基于季统计汇总
-- 方法1、传统的使用
SELECT CONVERT(CHAR(4), LoginTime, 120) + '0' + CAST(DATEPART(QUARTER, LoginTime) AS CHAR(1)) AS LoginQuarterDateFormat, COUNT(1) AS QuarterLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY CONVERT(CHAR(4), LoginTime, 120) + '0' + CAST(DATEPART(QUARTER, LoginTime) AS CHAR(1))
ORDER BY LoginQuarterDateFormat ASC;
GO
-- 方法2、使用时间粒度转换函数
SELECT dbo.ufn_Quarters2Date(dbo.ufn_Quarters(LoginTime)) AS LoginQuarterBasedate, COUNT(1) AS QuarterLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY dbo.ufn_Quarters(LoginTime)
ORDER BY LoginQuarterBasedate ASC;
GO
-- 方法3、使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Quarters2Date(LoginQuarters) AS LoginQuarterBasedate, COUNT(1) AS QuarterLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY LoginQuarters
ORDER BY LoginQuarters ASC;
GO
-- 方法4、嵌套查询与使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Quarters2Date(T.LoginQuarters) AS LoginQuarterBasedate, T.QuarterLoginTimesTotal
FROM (
    SELECT LoginQuarters, COUNT(1) AS QuarterLoginTimesTotal
    FROM dbo.LoginInfo
    GROUP BY LoginQuarters
) AS T
ORDER BY LoginQuarters ASC;
GO
查询以上四个方法的图形实际执行计划,如下图:
 
基于年统计汇总,T-SQL如下:
-- 基于年统计汇总
-- 方法1、传统的使用
SELECT CONVERT(CHAR(4), LoginTime, 120) AS LoginYearDateFormat, COUNT(1) AS YearLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY CONVERT(CHAR(4), LoginTime, 120)
ORDER BY LoginYearDateFormat ASC;
GO
-- 方法2、使用时间粒度转换函数
SELECT dbo.ufn_Years2Date(dbo.ufn_Years(LoginTime)) AS LoginYearBasedate, COUNT(1) AS YearLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY dbo.ufn_Years(LoginTime)
ORDER BY LoginYearBasedate ASC;
GO
-- 方法3、使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Years2Date(LoginYears) AS LoginYearBasedate, COUNT(1) AS YearLoginTimesTotal
FROM dbo.LoginInfo
GROUP BY LoginYears
ORDER BY LoginYears ASC;
GO
-- 方法4、嵌套查询与使用时间粒度字段列和时间粒度转换函数
SELECT dbo.ufn_Years2Date(T.LoginYears) AS LoginYearBasedate, T.YearLoginTimesTotal
FROM (
    SELECT LoginYears, COUNT(1) AS YearLoginTimesTotal
    FROM dbo.LoginInfo
    GROUP BY LoginYears
) AS T
ORDER BY LoginYears ASC;
GO
查询以上四个方法的图形实际执行计划,如下图:
注意:
1、以上演示的T-SQL代码使用了ufn_Days2Date、ufn_Months2Date、ufn_Quarters2Date、ufn_Years2Date,请参考SQL Server时间粒度系列----第7节日历数据表详解
 
总结语
 
本文仅仅提供了测试数据表的创建以及相关的数据填充,向测试表中增加时间粒度相关的字段列,使用时间粒度相关函数简单了基于日月季年统计汇总的演示。
 
参考清单列表

SQL Server时间粒度系列----第9节时间粒度示例演示的更多相关文章

  1. SQL Server时间粒度系列----第1节时间粒度概述

    本文目录列表: 1.什么是时间粒度?2.SQL Server提供的时间粒度3.SQL Server时间粒度代码演示   4.SQL Server基准日期 5.总结语6.参考清单列表   什么是时间粒度 ...

  2. SQL Server时间粒度系列----第4节季、年时间粒度详解

    本文目录列表: 1.SQL Server季时间粒度2.SQL Server年时间粒度 3.总结语 4.参考清单列表   SQL Serve季时间粒度       季时间粒度也即是季度时间粒度.一年每3 ...

  3. SQL Server时间粒度系列----第3节旬、月时间粒度详解

    本文目录列表: 1.SQL Server旬时间粒度2.SQL Server月有关时间粒度 3.SQL Server函数重构 4.总结语 5.参考清单列表   SQL Server旬时间粒度       ...

  4. 【目录】sql server 进阶篇系列

    随笔分类 - sql server 进阶篇系列 sql server 下载安装标记 摘要: SQL Server 2017 的各版本和支持的功能 https://docs.microsoft.com/ ...

  5. SQL Server调优系列基础篇

    前言 关于SQL Server调优系列是一个庞大的内容体系,非一言两语能够分析清楚,本篇先就在SQL 调优中所最常用的查询计划进行解析,力图做好基础的掌握,夯实基本功!而后再谈谈整体的语句调优. 通过 ...

  6. SQL Server调优系列基础篇(常用运算符总结——三种物理连接方式剖析)

    前言 上一篇我们介绍了如何查看查询计划,本篇将介绍在我们查看的查询计划时的分析技巧,以及几种我们常用的运算符优化技巧,同样侧重基础知识的掌握. 通过本篇可以了解我们平常所写的T-SQL语句,在SQL ...

  7. SQL Server调优系列基础篇(并行运算总结篇二)

    前言 上一篇文章我们介绍了查看查询计划的并行运行方式. 本篇我们接着分析SQL Server的并行运算. 闲言少叙,直接进入本篇的正题. 技术准备 同前几篇一样,基于SQL Server2008R2版 ...

  8. SQL Server调优系列基础篇(索引运算总结)

    前言 上几篇文章我们介绍了如何查看查询计划.常用运算符的介绍.并行运算的方式,有兴趣的可以点击查看. 本篇将分析在SQL Server中,如何利用先有索引项进行查询性能优化,通过了解这些索引项的应用方 ...

  9. SQL Server调优系列进阶篇(查询语句运行几个指标值监测)

    前言 上一篇我们分析了查询优化器的工作方式,其中包括:查询优化器的详细运行步骤.筛选条件分析.索引项优化等信息. 本篇我们分析在我们运行的过程中几个关键指标值的检测. 通过这些指标值来分析语句的运行问 ...

随机推荐

  1. 一个防止误删MSSQL数据库的方法

    一个防止误删MSSQL数据库的方法 环境:Windows2008 R2 .SQL 2012 今天发现一个有趣的现象,之前数据库服务器的其中几个数据库做过镜像,不过现在已经删除了,今天又要在那台服务器上 ...

  2. 8天掌握EF的Code First开发之Entity Framework介绍

    返回<8天掌握EF的Code First开发>总目录 本篇目录 Entity Framework概要 什么是ORM Entity Framework简史 Entity Framework具 ...

  3. Lesson 10 Not for jazz

    Text We have an old musical instrument. It is called a clavichord. It was made in Germany in 1681. O ...

  4. ASP.Net请求处理机制初步探索之旅 - Part 2 核心

    开篇:上一篇我们了解了一个请求从客户端发出到服务端接收并转到ASP.Net处理入口的过程,这篇我们开始探索ASP.Net的核心处理部分,借助强大的反编译工具,我们会看到几个熟悉又陌生的名词(类):Ht ...

  5. [Voice communications] 看得到的音频流

    上文介绍了 Web Audio API 的相关知识,以及如何在你的 web 程序中引入 音频流,内容都是介绍性的,所以没有写太多 DEMO.本文重点讲解如何利用 Web Audio API 中的中间节 ...

  6. Some warning were found during validation

    前几天做一个iOS下的App更新,到上传的时候出了问题,一直传了大半个小时,结果还是没传完,再试依然不行,于是只好关机,把电脑带回家弄. 回家后出现了更奇怪的事,经过漫长等待后,竟然出现这个提示: 我 ...

  7. xamarin UWP证书问题汇总

    打算开发一个软件使用rsa加密的东西,所以有用到数字证书这块,最近遇到些问题, 问题一:使用如下代码添加数字证书后,在证书管理器的当前用户和本地计算机下都找不到这张证书. using (X509Sto ...

  8. 数据库基础,表及SQL语句

    数据库基础及T-SQL语句 字符类型: int 整型 float 小数 double 小数 varchar(20) 字符串 bit 布尔型数据 datetime 日期时间类型 text 长文本 (以下 ...

  9. Nodejs学习笔记(二)--- 事件模块

    目录 简介及资料 事件常用函数及使用 emitter.on(event, listener) emitter.emit(event, [arg1], [arg2], [...]) emitter.on ...

  10. 由ArcMap属性字段自增引出字段计算器使用Python的技巧

    1.前言       前些日子有人问我ArcMap中要让某个字段的值实现自增有什么方法?我首先想到像SQL Server中对于数值型字段可以设置自增.所以我打开ArcCatalog查看发现只提供默认值 ...