【可持久化线段树】【P5826】【模板】子序列自动机
【可持久化线段树】【P5826】【模板】子序列自动机
Description
给定一个序列 \(A\),有 \(q\) 次询问,每次询问一个序列 \(B\) 是不是 \(A\) 的子序列
Limitations
序列 \(A\) 长度不超过 \(10^5\),询问序列长度之和不超过 \(10^6\),询问次数不超过 \(10^5\)
Solution
题外话:有关这道题的难度,我觉得大概到不了紫色,但是可持久化线段树的板子是紫色的,所以就设成了紫色
Algorithm \(1\)
考虑对于一个询问序列 \(B\),设其与 \(A\) 的最长公共子序列在 \(A\) 中的下标序列为 \(Z\),显然当且仅当 \(Z\) 的长度为 \(|B|\) 时,\(B\) 是 \(A\) 的子序列。合法的序列 \(Z\) 可能会有多个,但是只要我们找到了字典序最小的长度为 \(|B|\) 的序列 \(Z\),就可以说明 \(B\) 是 \(A\) 的子序列,否则不是。
考虑寻找字典序最小的 \(Z\) 可以贪心的选择,即对于 \(B\) 的每个前缀,可以求出其对应的 \(Z\) 序列的最后一位最小是多少,当 \(B\) 的前缀新增一个数字时,只需要在 \(A\) 中从当前 \(Z\) 序列最后一位的值的位置开始继续向后扫描,扫到第一个等于新增数字的位置,即是新的 \(Z\) 序列的最后一位。而如果扫描到了 \(A\) 的最后也没有找到,则意味着不存在合法的 \(Z\) 序列,因此 \(B\) 不是 \(A\) 的子序列。
这样的话每次询问时,最多扫描 \(A\) 一次,因此总时间复杂度为 \(O(nq + \sum L)\),可以通过 Subtask \(1\),期望得分 \(20~pts\)
Algorithm \(2\)
考虑对 \(A\) 建立一个子序列自动机,用来识别 \(A\) 的所有子序列。
同样运用 Algorithm 1 中的思想,对于一个字符串\(B\),我们只要找到了其与 \(A\) 的最长公共子序列在 \(A\) 中的字典序最小的下标序列 \(Z\),就可以说明 \(B\) 是 \(A\) 的子序列。那么对于 \(A\) 的每一位而言,在其需要新匹配一个数字时,应该转移到 \(A\) 后面第一个为该数字的位置,显然这样才能保证 \(Z\) 序列的字典序是最小的。因此我们的转移应该对每个位置维护加入一个数字以后它后面第一个为该数字的位置。
考虑我们对 \(A\) 从后向前逐位建立自动机,对于第 \(i\) 位而言,第 \(i - 1\) 位加入 \(A_i\) 应该转移到 \(i\),而加入其它数字应该转移到 \(A_i\) 加入该数字后转移到的位置。因此有伪代码
for i : m do
trans[n][i] <- -1
end
for i = n : 1 do
for j = 1 : m do
trans[i - 1][j] <- trans[i][j]
end
trans[i - 1][A[i]] <- i
end
其中 \(n\) 代表 \(A\) 的长度,\(m\) 代表 \(A\) 中的最大值,\(trans\) 是一个二维数组,代表这个自动机。
而对一个字符串 \(B\) 进行匹配时,只需要将 \(B\) 顺着自动机的转移跑一遍,若没有跑出自动机,则 \(B\) 是 \(A\) 的子序列,否则不是。
Function check:
pos <- 0
ret <- true
for i = 1 : L do
pos <- trans[pos][B[i]]
if pos == -1 then
ret <- false
break
endif
end
return ret
end Func
注意到这样构造自动机的时间复杂度为 \(O(nm)\),匹配的复杂度为 \(O(\sum L)\),因此总时间复杂度 \(O(nm + \sum L)\),可以通过 Subtask \(1\),\(2\),期望得分 \(55~pts\)。
Algorithm \(3\)
注意到构造自动机时,第 \(i\) 位与第 \(i - 1\) 位只有 \(A_i\) 一项不一样,第 \(i - 1\) 位的转移可以看做第 \(i\) 位的转移的基础上修改了一个位置,因此我们可以从后向前使用可持久化线段树来维护每个位置的转移数组,这样建立自动机的时间复杂度为 \(O(n \log m)\),匹配的时间复杂度为 \(O(\sum L \log m)\)。总时间复杂度 \(O((n + \sum L) \log m)\),可以通过全部的 Subtask,期望得分 \(100~pts\)。
Code
Algorithm \(2\)
代码来自 @_皎月半洒花
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#define MAXN 200010
using namespace std ;
int L, N, M, Q, S[MAXN], nxt[MAXN][102] ;
void build(){
for (int i = 1 ; i <= M ; ++ i)
nxt[L + 2][i] = nxt[L + 1][i] = L + 2 ;
for (int i = L ; i ; -- i)
memcpy(nxt[i - 1], nxt[i], sizeof(nxt[i])), nxt[i - 1][S[i]] = i ;
}
int qr(){
char c = getchar() ;
int res = 0 ; while (!isdigit(c)) c = getchar() ;
while (isdigit(c)) res = (res << 1) + (res << 3) + c - 48, c = getchar() ;
return res ;
}
int main(){
int i, j, k, emm ;
cin >> emm >> N >> Q >> M ; L = N ;
for (i = 1 ; i <= L ; ++ i) scanf("%d", &S[i]) ; build() ;
for (i = 1 ; i <= Q ; ++ i){
N = qr() ; int st = 0, ans = 0 ;
for (j = 1 ; j <= N ; ++ j){
k = qr(), st = nxt[st][k] ;
if (!st){
while (j < N)
++ j, emm = qr() ;
ans = 1 ;
}
// cout << st << endl ;
}
printf(ans ? "No\n" : "Yes\n") ;
}
return 0 ;
}
Algorithm \(3\)
#include <cstdio>
template <typename T>
inline void qr(T &x) {
char ch;
do ch = getchar(); while ((ch > '9') || (ch < '0'));
do x = x * 10 + (ch ^ 48), ch = getchar(); while ((ch >= '0') && (ch <= '9'));
}
const int maxn = 100005;
struct Tree {
Tree *ls, *rs;
int l, r, v;
Tree(const int L, const int R) : l(L), r(R), v(-1) {
if (l != r) {
int mid = (l + r) >> 1;
ls = new Tree(l, mid);
rs = new Tree(mid + 1, r);
}
}
Tree(Tree *pre, const int P, const int V) : l(pre->l), r(pre->r), v(0) {
if (l == r) {
v = V;
} else {
if (pre->ls->r >= P) {
rs = pre->rs;
ls = new Tree(pre->ls, P, V);
} else {
ls = pre->ls;
rs = new Tree(pre->rs, P, V);
}
}
}
int query(const int x) {
if (this->l == this->r) {
return this->v;
} else {
return (this->ls->r >= x) ? this->ls->query(x) : this->rs->query(x);
}
}
};
Tree *rot[maxn];
int tp, n, q, m;
int MU[maxn];
int main() {
qr(tp); qr(n); qr(q); qr(m);
rot[n] = new Tree(1, m);
for (int i = 1; i <= n; ++i) {
qr(MU[i]);
}
for (int i = n; i; --i) {
rot[i - 1] = new Tree(rot[i], MU[i], i);
}
for (int L, x, pos; q; --q) {
L = pos = 0; qr(L);
while ((L--) && (pos != -1)) {
x = 0; qr(x);
if ((pos = rot[pos]->query(x)) == -1) {
while (L--) {
qr(x);
}
break;
}
}
puts((~pos) ? "Yes" : "No");
}
return 0;
}
appreciation
感谢验题人:@_皎月半洒花 @water_lift
感谢本文的审核与校对:@Dusker
【可持久化线段树】【P5826】【模板】子序列自动机的更多相关文章
- Luogu P3919 【模板】可持久化数组 可持久化线段树
其实就是可持久化线段树的模板题线段树不会看这里 #include<bits/stdc++.h> ; using namespace std; ]; ],rc[N*],val[N*],cnt ...
- LuoguP3834 【模板】可持久化线段树 1(主席树)|| 离散化
题目:[模板]可持久化线段树 1(主席树) 不知道说啥. #include<cstdio> #include<cstring> #include<iostream> ...
- Luogu P3919【模板】可持久化数组(可持久化线段树/平衡树)
题面:[模板]可持久化数组(可持久化线段树/平衡树) 不知道说啥,总之我挺喜欢自己打的板子的! #include<cstdio> #include<cstring> #incl ...
- 洛谷 P3919 【模板】可持久化数组(可持久化线段树/平衡树)-可持久化线段树(单点更新,单点查询)
P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...
- 【洛谷P3834】(模板)可持久化线段树 1(主席树)
[模板]可持久化线段树 1(主席树) https://www.luogu.org/problemnew/show/P3834 主席树支持历史查询,空间复杂度为O(nlogn),需要动态开点 本题用一个 ...
- 洛谷——P3919 【模板】可持久化数组(可持久化线段树/平衡树)
P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集 ...
- [POJ2104] 区间第k大数 [区间第k大数,可持久化线段树模板题]
可持久化线段树模板题. #include <iostream> #include <algorithm> #include <cstdio> #include &l ...
- luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...
- 洛谷P3834【模板】可持久化线段树 1(主席树)
题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...
随机推荐
- oracle数据库表约束、视图、索引—该记录为本人以前微博的文章
一.Oracle 数据库常用操作续关于创建表时创建约束1.创建表的时候增加约束----约束是定义表中的数据应该遵循的规则或者满足的条件----约束是建立在列上的,让某一列或者某几列数据之间有约束--- ...
- SQLAlchemy基础
1.介绍 做个简单笔记,方便回顾. SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后 ...
- Laravel源码解析之model(代码)
本篇文章给大家带来的内容是关于Laravel源码解析之model(代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. 前言 提前预祝猿人们国庆快乐,吃好.喝好.玩好,我会在电视上看 ...
- JVM 的GC算法和垃圾收集器
1.标记清除算法 黑色部分代表可回收对象,灰色部分代表存活对象,绿色部分代表未使用的.最基础的收集算法就是标记清除算法如同他名字一样,算法分为"标记"和"清除" ...
- 【LeetCode】145. Binary Tree Postorder Traversal
Difficulty: Hard More:[目录]LeetCode Java实现 Description https://leetcode.com/problems/binary-tree-pos ...
- 单片机成长之路(51基础篇) - 026 基于stm89c52之单片机看门狗
基于stc89c52的看门狗,代码如下: main.c #include "stc89c5x_Quick_configuration.h" // 自定义头文件 #include & ...
- TCP/UDP协议(二)
面试问题:Tcp/Udp协议是什么,各有什么异同点,各自的使用场景? Tcp协议(传输控制协议) tcp是面向连接的协议,在收发数据之前,必须与对方建立可靠的连接: 三次握手:简单形象通俗描述: 主机 ...
- ASP.NET Core 应用程序状态
在ASP.NET Core中,由多种途径可以对应用程序状态进行管理,使用哪种途径,由检索状态的时机和方式决定. 应用程序状态指的是用于描述当前状况的任意数据.包括全局和用户特有的数据. 开发人员可以根 ...
- because its MIME type ('text/html') is not a supported stylesheet MIME type, and strict MIME checkin
1 前言 浏览器报错误(chrome和firefox都会):because its MIME type ('text/html') is not a supported stylesheet MIME ...
- Sublimetext3运行Python及python交互环境配置(便捷大法)
1.首先安装Sublimetext3 安装路径保持默认,点击下一步直到安装完成. 2.安装Python 安装步骤参考百度:https://baijiahao.baidu.com/s?id=160657 ...