题目

悬线法的思想——即扫描线的思想,每个矩阵必定是由两个障碍来构成左右边界或者上下边界。

如果此两个障碍组成了左右边界,枚举这两个障碍中途更新这两个障碍之间的矩阵上下边界,并且更新最大值。

考虑如何线性求出两个障碍的矩阵上下边界,

我们可以把障碍按x坐标排序,然后对于每个障碍,都找x比他大的障碍找一遍,也就是悬线向右扩展,每找一个就更新一下上边界或下边界也就是更新悬线的上下端点, 因为越向右,矩阵的上边界和下边界就逼近矩阵的宽减少,但是矩阵的长却是一直增大的,因此需要每次都更新最大值。

组成了上下边界同理,最终将漏解的情况加上, 就求出了最优解。

#include <bits/stdc++.h>
using namespace std;
struct dat {
int x, y;
} a[1010000];
int l, w, n, maxn;
bool cmp1 (dat a, dat b)
{return a.y < b.y;}
bool cmp2 (dat a, dat b)
{return a.x < b.x;}
inline void init()
{
scanf("%d%d", &l, &w);
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d%d", &a[i].x, &a[i].y);
a[++n].x = 0, a[n].y = w;
a[++n].x = l, a[n].y = w;
a[++n].x = 0, a[n].y = 0;
a[++n].x = l, a[n].y = 0;
}
int main()
{
init();
sort(a + 1, a + 1 + n, cmp2);//复杂度O(n^2)枚举两个障碍里的面积, 用扫描的思想解决,
for (int i = 1; i <= n; i++)//high为最低的点,low为最高的点 pos为向右扩展的悬线长度,不需要向左,因为前面的向右等同于后面的向左
{
int high, low, pos;
high = 0, low = w, pos = l - a[i].x;//pos*(low-high)为当前矩阵面积最大值,
for (int j = i + 1; j <= n; j++)
{
if (pos * (low - high) <= maxn) break;//如果当前最优解都不能比maxn大,break
maxn = max(maxn, (low - high) * (a[j].x - a[i].x));
if (a[j].y >= a[i].y)
low = min(low, a[j].y);
else
high = max(high, a[j].y);
}
}
sort(a + 1, a + 1 + n, cmp1);
for (int i = 1; i <= n; i++)
{
int lef, rig, pos;
lef = 0, rig = l, pos = w - a[i].y;//lef为最左边的点,rig为当前最右边的点,pos为向下扩展的悬线长度。
for (int j = i + 1; j <= n; j++)
{
if (pos * (rig - lef) <= maxn) break;
maxn = max(maxn, (rig - lef) * (a[j].y - a[i].y));
if (a[j].x >= a[i].x)
rig = min(rig, a[j].x);
else
lef = max(lef, a[j].x);
}
}
for (int i = 1; i < n; i++)//有漏解的情况。
maxn = max( maxn, l * ( a[i + 1].y - a[i].y ) );
printf("%d", maxn);
return 0;
}

洛谷P1578 奶牛牧场(悬线法思想)的更多相关文章

  1. 洛谷P1169 棋盘制作(悬线法)

    题目链接:https://www.luogu.org/problemnew/show/P1169 #include<bits/stdc++.h> #define fi first #def ...

  2. [WC2002][洛谷P1578]奶牛浴场

    洛谷题解里那个人可真是话多呢. 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每 ...

  3. 洛谷 P1578 奶牛浴场

    https://www.luogu.org/problemnew/show/P1578 题解 另外这题有一些小坑,洛谷的题解里面有讲 #pragma GCC optimize("Ofast& ...

  4. 洛谷P1578 奶牛浴场

    P1578 奶牛浴场 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每头奶牛都必 ...

  5. 洛谷 P1578 奶牛浴场 —— 最大子矩形

    题目:https://www.luogu.org/problemnew/show/P1578 枚举左边界,向右枚举右边界,同时不断限制上下边界,最后右边界是整个图的边界: 由于没有做左边界是整个图的边 ...

  6. 洛谷 P1578 奶牛浴场 题解

    题面 1.定义有效子矩形为内部不包含任何障碍点且边界与坐标轴平行的子矩形.如图所示,第一个是有效子矩形(尽管边界上有障碍点),第二个不是有效子矩形(因为内部含有障碍点). 2.极大有效子矩形:一个有效 ...

  7. [DP专题]悬线法

    参考:https://blog.csdn.net/twtsa/article/details/8120269 先给出题目来源:(洛谷) 1.p1387 最大正方形 2.P1169 棋盘制作 3.p27 ...

  8. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  9. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

随机推荐

  1. vue 复制文本到剪切板上

    1.下载clipboard.js npm install vue-clipboard2 --save 2.引入,可以在mian.js中全局引入也可以在单个vue中引入 import Clipboard ...

  2. 测试wss是否连接企业微信成功

    企业微信考勤机有时候无法连接,可以使用下面代码来测试下网络情况  <html> <head> <title>测试wss</title> </hea ...

  3. Failed to instantiate [org.elasticsearch.client.transport.TransportClient]

    Springboot 集成 ElasticSearch,springboot报错如下: Error starting ApplicationContext. To display the auto-c ...

  4. Linux : Nginx相关

    nginx安装参考链接: https://www.cnblogs.com/kaid/p/7640723.html 自定义编译目录: https://blog.csdn.net/ainuser/arti ...

  5. MySQL 8.0.13安装修改密码的一个问题,记录一下。

    https://blog.csdn.net/qq_37350706/article/details/81707862 关于安装MySQL 8.0.13,本人就不多说了,上面这个链接讲的非常详细 请参考 ...

  6. 记录一次排查使用HttpWebRequest发送请求的发生“基础连接已关闭:接收时发生错误”异常问题的过程

    描述:某次更新程序,需要给测试员MM测试,之前都是正常的,更新后给MM测试就报异常System.Net.WebException 基础连接已经关闭:接收时发生错误 -------> System ...

  7. Python 绘图与可视化 matplotlib text 与transform

    Text 为plots添加文本或者公式,反正就是添加文本了 参考链接:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.text.html#ma ...

  8. PAT 1024 科学记数法

    PAT 1024 科学记数法 科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9].[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部 ...

  9. Android 中发送邮件

    第一步.导入第三方jar包 Android实现发送邮件,首先需要依赖additional.jar.mail.jar和activation.jar这3个jar包. Google提供了下载地址:https ...

  10. mysql后台线程详解

    1.mysql后台线程 mysql后台线程主要用于维持服务器的正常运行和完成用户提交的任务,主要包括:master thread,read thread,write thread,redo log t ...