题目

悬线法的思想——即扫描线的思想,每个矩阵必定是由两个障碍来构成左右边界或者上下边界。

如果此两个障碍组成了左右边界,枚举这两个障碍中途更新这两个障碍之间的矩阵上下边界,并且更新最大值。

考虑如何线性求出两个障碍的矩阵上下边界,

我们可以把障碍按x坐标排序,然后对于每个障碍,都找x比他大的障碍找一遍,也就是悬线向右扩展,每找一个就更新一下上边界或下边界也就是更新悬线的上下端点, 因为越向右,矩阵的上边界和下边界就逼近矩阵的宽减少,但是矩阵的长却是一直增大的,因此需要每次都更新最大值。

组成了上下边界同理,最终将漏解的情况加上, 就求出了最优解。

#include <bits/stdc++.h>
using namespace std;
struct dat {
int x, y;
} a[1010000];
int l, w, n, maxn;
bool cmp1 (dat a, dat b)
{return a.y < b.y;}
bool cmp2 (dat a, dat b)
{return a.x < b.x;}
inline void init()
{
scanf("%d%d", &l, &w);
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d%d", &a[i].x, &a[i].y);
a[++n].x = 0, a[n].y = w;
a[++n].x = l, a[n].y = w;
a[++n].x = 0, a[n].y = 0;
a[++n].x = l, a[n].y = 0;
}
int main()
{
init();
sort(a + 1, a + 1 + n, cmp2);//复杂度O(n^2)枚举两个障碍里的面积, 用扫描的思想解决,
for (int i = 1; i <= n; i++)//high为最低的点,low为最高的点 pos为向右扩展的悬线长度,不需要向左,因为前面的向右等同于后面的向左
{
int high, low, pos;
high = 0, low = w, pos = l - a[i].x;//pos*(low-high)为当前矩阵面积最大值,
for (int j = i + 1; j <= n; j++)
{
if (pos * (low - high) <= maxn) break;//如果当前最优解都不能比maxn大,break
maxn = max(maxn, (low - high) * (a[j].x - a[i].x));
if (a[j].y >= a[i].y)
low = min(low, a[j].y);
else
high = max(high, a[j].y);
}
}
sort(a + 1, a + 1 + n, cmp1);
for (int i = 1; i <= n; i++)
{
int lef, rig, pos;
lef = 0, rig = l, pos = w - a[i].y;//lef为最左边的点,rig为当前最右边的点,pos为向下扩展的悬线长度。
for (int j = i + 1; j <= n; j++)
{
if (pos * (rig - lef) <= maxn) break;
maxn = max(maxn, (rig - lef) * (a[j].y - a[i].y));
if (a[j].x >= a[i].x)
rig = min(rig, a[j].x);
else
lef = max(lef, a[j].x);
}
}
for (int i = 1; i < n; i++)//有漏解的情况。
maxn = max( maxn, l * ( a[i + 1].y - a[i].y ) );
printf("%d", maxn);
return 0;
}

洛谷P1578 奶牛牧场(悬线法思想)的更多相关文章

  1. 洛谷P1169 棋盘制作(悬线法)

    题目链接:https://www.luogu.org/problemnew/show/P1169 #include<bits/stdc++.h> #define fi first #def ...

  2. [WC2002][洛谷P1578]奶牛浴场

    洛谷题解里那个人可真是话多呢. 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每 ...

  3. 洛谷 P1578 奶牛浴场

    https://www.luogu.org/problemnew/show/P1578 题解 另外这题有一些小坑,洛谷的题解里面有讲 #pragma GCC optimize("Ofast& ...

  4. 洛谷P1578 奶牛浴场

    P1578 奶牛浴场 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每头奶牛都必 ...

  5. 洛谷 P1578 奶牛浴场 —— 最大子矩形

    题目:https://www.luogu.org/problemnew/show/P1578 枚举左边界,向右枚举右边界,同时不断限制上下边界,最后右边界是整个图的边界: 由于没有做左边界是整个图的边 ...

  6. 洛谷 P1578 奶牛浴场 题解

    题面 1.定义有效子矩形为内部不包含任何障碍点且边界与坐标轴平行的子矩形.如图所示,第一个是有效子矩形(尽管边界上有障碍点),第二个不是有效子矩形(因为内部含有障碍点). 2.极大有效子矩形:一个有效 ...

  7. [DP专题]悬线法

    参考:https://blog.csdn.net/twtsa/article/details/8120269 先给出题目来源:(洛谷) 1.p1387 最大正方形 2.P1169 棋盘制作 3.p27 ...

  8. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  9. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

随机推荐

  1. 如何在同一行里执行多个linux命令?

    如果前一个命令能够成功执行,那么可以使用"&&"操作符(引号内)来合并多个后续的命令. 举例: cd /my_folder && rm *.jar ...

  2. [cf 1264 C] Beautiful Mirrors with queries

    题意: 你有$n$个魔镜,第$i$个魔镜有$p_{i}$的概率说你美. 从第1天开始,你会依次询问魔镜$1-n$你美不美. 若第$i$个魔镜说你美则你明天会继续询问第$i+1$个魔镜. 否则你明天会从 ...

  3. R数据挖掘 第三篇:聚类的评估(簇数确定和轮廓系数)和可视化

    在实际的聚类应用中,通常使用k-均值和k-中心化算法来进行聚类分析,这两种算法都需要输入簇数,为了保证聚类的质量,应该首先确定最佳的簇数,并使用轮廓系数来评估聚类的结果. 一,k-均值法确定最佳的簇数 ...

  4. [转] JS中arr.forEach()如何跳出循环

    我们都知道for循环里要跳出整个循环是使用break,但在数组中用forEach循环如要退出整个循环呢?使用break会报错,使用return也不能跳出循环. 使用break将会报错: var arr ...

  5. 防止jQuery .on多次绑定

    jQuery off() 方法 $("button").click(function(){$("p").off("click");}); 参 ...

  6. spring-security.xml——安全性框架配置文件

    <?xml version="1.0" encoding="UTF-8"?><beans:beans xmlns="http://w ...

  7. msgTips 顶部弹窗

    最近发现好多网站都采用顶部弹窗,并且不用用户手动去点击确定.感觉这样很方便用户,所以也找了好多大神的代码,整理一下方便以后查找 前端: @{ Layout = null; } <!DOCTYPE ...

  8. 【转载】C#中ArrayList使用RemoveRange移除一整段数据

    在C#的编程开发中,ArrayList集合是一个常用的非泛型类集合,如果需要移除ArrayList集合中指定索引位置开始的一整段元素对象,则可以使用ArrayList集合中的RemoveRange方法 ...

  9. Java中assert(断言)的使用

    Java中assert(断言)的使用 1.Eclipse中默认assert(断言)是关闭,开启方式如下: 简单来说:就是设置一下jvm的参数,参数是-enableassertions或者-ea(推荐) ...

  10. 英语chrysopal金绿宝石chrysopal单词

    chrysopal金绿宝石,也称金绿玉.化学成分为BeAl2O4.晶体属正交(斜方)晶系的氧化物矿物.它位列名贵宝石,具有四个变种:猫眼,变石,变石猫眼和金绿宝石晶体. 金绿宝石本身就是较稀少的矿物, ...