题目大意:有一行物品,每两个物品之间有一个距离。每个物品有一个价值。现在问你若干问题,每个问题问你把l~r所有物品全部搬到物品x处需要多少价值。

把物品a搬到物品b处的价值为物品a的价值乘a到b的距离。

解题思路:前缀和。

首先我们考虑$x<l<r$的情况。

发现答案为$\sum\limits ^{r}_{i=l} a[i]×dis(x,i)$。其中a[i]是第i个物品的价值,dis(x,i)表示x到i的距离。

首先我们容易想到用前缀和保存距离,即$dis[i]=\sum\limits^r _{i=2}p[i]$。p[i]表示i到i-1的距离。

但时间复杂度仍然很高,怎么办?

我们可以再用一个前缀和,用ds[i]保存第1到i个物品,每个物品到第一个物品的价值总和,即$ds[i]=\sum\limits^r_i=1 a[i]×dis[i]$。

那么ds[r]-ds[l-1]就表示l到r所有物品搬到1的价值,可是要求的是到x的距离,怎么办?

我们发现,这个答案多出来的其实是l到r所有物品搬dis[x]距离的价值,即多搬了1到x的距离。

那么就在答案中减去$\sum\limits^r _{i=l} a[i]×dis[x]=(\sum\limits^r_{i=l}a[i])×dis[x]$。

发现a[i]也可以用前缀和,那么我们令$sum[i]=\sum\limits^r _{i=1} a[i]$。

那么最后答案为$ds[r]-sd[l-1]+dis[x]×(sum[r]-sum[l-1])$。

当$l<r<x$时,可以用后缀和,然后求解即可。

当$l\leq x\leq r$时,我们把它分成两段,l~x-1和x+1~r,分别求解即可。

由于求解时间复杂度$O(1)$,求前缀和时间复杂度$O(n)$,所以总时间复杂度$O(n+m)$,在洛谷神机+O2下时间完全不是问题。

注意边算边模和long long(数组也要,不然答案就会莫名其妙地错误)。

C++ Code:

#include<cstdio>
#include<cctype>
using namespace std;
#define mod 19260817
#define N 200020
int n,m,a[N];
long long disl[N],disr[N],dsl[N],dsr[N],suml[N],sumr[N];
inline int readint(){
char c=getchar();
for(;!isdigit(c);c=getchar());
int d=0;
for(;isdigit(c);c=getchar())
d=(d<<3)+(d<<1)+(c^'0');
return d;
}
inline long long ansL(int l,int r,int x){return((dsl[r]-dsl[l-1]+mod)%mod-(long long)disl[x]*((suml[r]-suml[l-1]+mod)%mod)%mod+mod)%mod;}
inline long long ansR(int l,int r,int x){return((dsr[l]-dsr[r+1]+mod)%mod-(long long)disr[x]*((sumr[l]-sumr[r+1]+mod)%mod)%mod+mod)%mod;}
int main(){
n=readint();
m=readint();
disl[1]=disr[n]=suml[0]=sumr[n+1]=0;
for(int i=2;i<=n;++i)disl[i]=(disl[i-1]+(a[i]=readint()%mod))%mod;
for(int i=n;i>1;--i)disr[i-1]=(disr[i]+a[i])%mod;
for(int i=1;i<=n;++i)suml[i]=(suml[i-1]+(a[i]=readint()%mod))%mod;
for(int i=n+1;i;--i)sumr[i]=(sumr[i+1]+a[i])%mod;
dsl[0]=dsr[n+1]=0;
for(int i=1;i<=n;++i)
dsl[i]=(dsl[i-1]+disl[i]*a[i]%mod)%mod;
for(int i=n;i;--i)
dsr[i]=(dsr[i+1]+disr[i]*a[i]%mod)%mod;
while(m--){
int x=readint(),l=readint(),r=readint();
if(l>r)l^=r^=l^=r;
if(x<l)printf("%d\n",(int)ansL(l,r,x));else
if(x>r)printf("%d\n",(int)ansR(l,r,x));else
printf("%d\n",(int)((ansR(l,x-1,x)+ansL(x+1,r,x))%mod));
}
return 0;
}

[洛谷P3932]浮游大陆的68号岛的更多相关文章

  1. 线段树 洛谷P3932 浮游大陆的68号岛

    P3932 浮游大陆的68号岛 题目描述 妖精仓库里生活着黄金妖精们,她们过着快乐,却随时准备着迎接死亡的生活. 换用更高尚的说法,是随时准备着为这个无药可救的世界献身. 然而孩子们的生活却总是无忧无 ...

  2. P3932 浮游大陆的68号岛

    P3932 浮游大陆的68号岛 妖精仓库的储物点可以看做在一个数轴上.每一个储物点会有一些东西,同时他们之间存在距离. 每次他们会选出一个小妖精,然后剩下的人找到区间[l,r]储物点的所有东西,清点完 ...

  3. P3932 浮游大陆的68号岛 【线段树】

    P3932 浮游大陆的68号岛 有一天小妖精们又在做游戏.这个游戏是这样的. 妖精仓库的储物点可以看做在一个数轴上.每一个储物点会有一些东西,同时他们之间存在距离. 每次他们会选出一个小妖精,然后剩下 ...

  4. [Luogu3932] 浮游大陆的68号岛

    题目背景 大样例下发链接: https://pan.baidu.com/s/1nuVpRS1 密码: sfxg 浮游大陆的68号岛,位于浮游大陆的边境地带.平时很少有人造访. 岛上被浓厚的森林覆盖. ...

  5. noip模拟赛 浮游大陆的68号岛

    题目描述 妖精仓库里生活着黄金妖精们,她们过着快乐,却随时准备着迎接死亡的生活. 换用更高尚的说法,是随时准备着为这个无药可救的世界献身. 然而孩子们的生活却总是无忧无虑的,幼体的黄金妖精们过着天真烂 ...

  6. LuoguP3932 浮游大陆的68号岛 题解

    Content 在一个无限长的数轴上有 \(n\) 个点.第 \(i\) 个点上面有 \(a_i\) 件物品,且第 \(i\) 个点到第 \(i+1\) 个点的距离为 \(b_i\). 定义从第 \( ...

  7. 洛谷 P2184 贪婪大陆 解题报告

    P2184 贪婪大陆 题目背景 面对蚂蚁们的疯狂进攻,小\(FF\)的\(Tower\) \(defence\)宣告失败--人类被蚂蚁们逼到了\(Greed\) \(Island\)上的一个海湾.现在 ...

  8. 洛谷 P2446 [SDOI2010]大陆争霸 解题报告

    P2446 [SDOI2010]大陆争霸 题目背景 在一个遥远的世界里有两个国家:位于大陆西端的杰森国和位于大陆东端的克里斯国.两个国家的人民分别信仰两个对立的神:杰森国信仰象征黑暗和毁灭的神曾·布拉 ...

  9. 洛谷——P2446 [SDOI2010]大陆争霸

    https://www.luogu.org/problem/show?pid=2446#sub 题目背景 在一个遥远的世界里有两个国家:位于大陆西端的杰森国和位于大陆东端的克里斯国.两个国家的人民分别 ...

随机推荐

  1. http协议无状态中的 "状态" 到底指的是什么?!(转载)

    转载自:https://www.cnblogs.com/bellkosmos/p/5237146.html   引子: 最近在好好了解http,发现对介绍http的第一句话[http协议是无状态的,无 ...

  2. Kali linux 2016.2(Rolling)中的Metasploit如何更新与目录结构初步认识

    如何更新MSF 1.Windows平台 方法1: 运行msfupdate.bat 在msfconsole里执行命令svn update 或者 方法2:  2.unix/linux平台 方法1: 运行m ...

  3. Wordcount 和 shuffle的流程

  4. Java8新特性 利用流和Lambda表达式对List集合进行处理

    Lambda表达式处理List 最近在做项目的过程中经常会接触到 lambda 表达式,随后发现它基本上可以替代所有 for 循环,包括增强for循环.也就是我认为,绝大部分的for循环都可以用 la ...

  5. 【算法】Floyd-Warshall算法(任意两点间的最短路问题)(判断负圈)

    求解所有两点间的最短路问题叫做任意两点间的最短路问题. 可以用动态规划来解决, d[k][i][j] 表示只用前k个顶点和顶点i到顶点j的最短路径长度. 分两种情况讨论: 1.经过顶点k,  d[k] ...

  6. Python链表

    class Node: ''' 节点类 链表节点结构 data next data: 节点保存的数据 _next: 保存下一个节点对象 ''' def __init__(self, data, pne ...

  7. 写入~/.bashrc 文件

    1.进入~/.bashrc 文件 vim ~/.bashrc 2.按下I键,然后按Enter键 加入路径 3.按ESC键退出,再按:wq! 保存即可.

  8. ASP.NET-ajax.acionlink使用

    Ajax 属性的ActionLink方法可以创建一个具有异步行为的锚标签. ActionLink方法的第一个参数指定了链接文本,第二个参数是要异步调用的操作的名称.类似于同名的HTML辅助方法,AJA ...

  9. JavaScript编写Web脚本最佳实现

    最近在看JavaScript DOM 编程艺术,总结一下JavaScript编写Web脚本的规范与实现,对于实现有以下几点要求: 平稳退化:确保网页在没有JavaScript下也能正常运行 分离Jav ...

  10. POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat)

    POJ 3207 Ikki's Story IV - Panda's Trick id=3207" target="_blank" style=""& ...