传送门

Description

有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数。

Input

单组测试数据。

第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 2000),表示棋盘的行和列,还有不能走的格子的数目。

接下来n行描述格子,第i行有两个整数ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w),表示格子所在的行和列。

输入保证起点和终点不会有不能走的格子。

Output

输出答案对1000000007取余的结果。

Sample Input

3 4 2

2 2

2 3

Sample Output

2

Solution

luogu 4478 上学路线还简单不少

Code

//By Menteur_Hxy
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define R(i,a,b) for(register int i=(b);i>=(a);i--)
using namespace std;
typedef long long LL; inline int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=2e5,MAX=2010,MOD=1e9+7;//组合数预处理2e5因为最大是横竖加起来
int n,m,p;
LL fac[N+10],inv[N+10],f[MAX];
struct P{int x,y;}pl[MAX]; LL qpow(LL a,LL b) {
LL t=1;
while(b) {
if(b&1) t=t*a%MOD;
a=a*a%MOD; b>>=1;
}
return t;
} void init() {
fac[0]=1; F(i,1,N) fac[i]=fac[i-1]*i%MOD;
inv[N]=qpow(fac[N],MOD-2);
R(i,-1,N-1) inv[i]=inv[i+1]*(LL)(i+1)%MOD;
} LL C(int m,int n) {return fac[m]*inv[m-n]%MOD*inv[n]%MOD;}
bool cmp(P a,P b) {return a.x==b.x?a.y<b.y:a.x<b.x;} int main() {
init();
n=read(),m=read(),p=read();
F(i,1,p) pl[i].x=read(),pl[i].y=read();
pl[++p].x=n,pl[p].y=m;
sort(pl+1,pl+1+p,cmp);
F(i,1,p) f[i]=C(pl[i].x+pl[i].y-2,pl[i].x-1);
F(i,1,p) F(j,1,i-1) if(pl[j].y<=pl[i].y) {// 一定是小于等于
LL tmp=C(pl[i].x+pl[i].y-pl[j].x-pl[j].y,pl[i].x-pl[j].x);
f[i]=(f[i]-f[j]*tmp%MOD+MOD)%MOD;
}
printf("%lld",f[p]%MOD);
return 0;
}

[51Nod1486] 大大走格子 (dp+容斥)的更多相关文章

  1. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  2. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

  3. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  4. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  5. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  6. 51nod1486 大大走格子

    容斥定理+dp...妈呀#1rp耗尽了难怪最近那么衰... #include<cstdio> #include<cstring> #include<cctype> ...

  7. 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)

    点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...

  8. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  9. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

随机推荐

  1. Two Heads Are Often Better Than One

    Two Heads Are Often Better Than One Adrian Wible PROGRAMMING REQUIRES DEEP THOUGHT, and deep thought ...

  2. gradle配置国内的镜像

    gradle配置国内的镜像 学习了:http://blog.csdn.net/stdupanda/article/details/72724181 http://blog.csdn.net/lj402 ...

  3. jenkins配置邮箱遇到的问题

    错误一:发送测试邮件测试配置没有填写接收者的邮箱 原因:没有写接收者的邮箱 2.写了接受者的邮箱 密码错误 解决办法:qq邮箱>设置>账户,发送短信后点我已发送,就会接收到密码 3.发送时 ...

  4. 简化bigdecimal计算的小工具类

    简化bigdecimal计算的小工具类 如果我们要做一个加法运算,需要先将两个浮点数转为String,然后够造成BigDecimal,在其中一个上调用add方法,传入另一个作为参数,然后把运算的结果( ...

  5. P1993 小K的农场 差分约束系统

    这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...

  6. React-Native 踩坑过程

    踩坑过程: 解决方法就是去 SDK Manager 把 23.0.1 的版本下载了 而如果报错信息中含有bintray.com.gradle.org等网址,请***,反复重试,或者去react nat ...

  7. 用JS将指定时间转化成用户当地时区的时间

    公司的项目是面向海外用户的,但是最初的设计没考虑到时差问题,存入数据库的时间都是东八区的时间,导致现在补救有点坑爹...... 有一个需求是,产品详细页需要注明此款产品的开售时间,当海外的用户来访问这 ...

  8. PCB SQL MS 将多行有序数据转为一行数据(一列转一行)

    一.原数据:多行有序 SELECT CC.techname FROM PPEflow BB LEFT JOIN pubgyxxb CC ON BB.techno = CC.techno ORDER B ...

  9. flume+flume+kafka消息传递+storm消费

    通过flume收集其他机器上flume的监测数据,发送到本机的kafka进行消费. 环境:slave中安装flume,master中安装flume+kafka(这里用两台虚拟机,也可以用三台以上) m ...

  10. SQLyog 快捷方式

    连接Ctrl+M 创建新连接Ctrl+N 以当前连接属性创建新连接Ctrl+F4/Ctrl+W 断开当前连接Ctrl+Tab 切换到下一个连接Ctrl+Shift+Tab 切换到上一个连接Ctrl+1 ...