Gold Transportation

Time Limit: 2000ms
Memory Limit: 65536KB

This problem will be judged on PKU. Original ID: 3228
64-bit integer IO format: %lld      Java class name: Main

 
Recently, a number of gold mines have been discovered in Zorroming State. To protect this treasure, we must transport this gold to the storehouses as quickly as possible. Suppose that the Zorroming State consists of N towns and there are M bidirectional roads among these towns. The gold mines are only discovered in parts of the towns, while the storehouses are also owned by parts of the towns. The storage of the gold mine and storehouse for each town is finite. The truck drivers in the Zorroming State are famous for their bad temper that they would not like to drive all the time and they need a bar and an inn available in the trip for a good rest. Therefore, your task is to minimize the maximum adjacent distance among all the possible transport routes on the condition that all the gold is safely transported to the storehouses.

 

Input

The input contains several test cases. For each case, the first line is integer N(1<=N<=200). The second line is N integers associated with the storage of the gold mine in every towns .The third line is also N integers associated with the storage of the storehouses in every towns .Next is integer M(0<=M<=(n-1)*n/2).Then M lines follow. Each line is three integers x y and d(1<=x,y<=N,0<d<=10000), means that there is a road between x and y for distance of d. N=0 means end of the input.

 

Output

For each case, output the minimum of the maximum adjacent distance on the condition that all the gold has been transported to the storehouses or "No Solution".

 

Sample Input

4
3 2 0 0
0 0 3 3
6
1 2 4
1 3 10
1 4 12
2 3 6
2 4 8
3 4 5
0

Sample Output

6

Source

 
解题:二分距离。求最小的最大距离。。。
 
源点与宝矿连接,容量为该矿的容量,汇点与藏点连接,容量为藏地的容量。矿 和 藏地的距离进行枚举
 
此题为什么如何建图,我还是有点不明白,奇葩的建图过程。
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc {
int to,flow,next;
arc(int x = ,int y = ,int z = -) {
to = x;
flow = y;
next = z;
}
};
arc e[maxn*maxn];
int head[maxn],d[maxn],gold[maxn],store[maxn];
int tot,n,m,S,T,cur[maxn],q[maxn],hd,tl;
int a[maxn*maxn],b[maxn*maxn],c[maxn*maxn];
void add(int u,int v,int w) {
e[tot] = arc(v,w,head[u]);
head[u] = tot++;
e[tot] = arc(u,,head[v]);
head[v] = tot++;
}
void build(int mid) {
memset(head,-,sizeof(head));
tot = ;
for(int i = ; i < m; i++)
if(c[i] <= mid) {
add(a[i],b[i],INF);
add(b[i],a[i],INF);
}
for(int i = ; i <= n; i++)
add(S,i,gold[i]);
for(int i = ; i <= n; i++)
add(i,T,store[i]);
}
bool bfs() {
memset(d,-,sizeof(d));
hd = tl = ;
q[tl++] = S;
d[S] = ;
while(hd < tl) {
int u = q[hd++];
for(int i = head[u]; ~i; i = e[i].next) {
if(d[e[i].to] == - && e[i].flow > ) {
d[e[i].to] = d[u] + ;
q[tl++] = e[i].to;
}
}
}
return d[T] > -;
}
int dfs(int u,int low) {
if(u == T) return low;
int tmp = ,a;
for(int &i = cur[u]; ~i; i = e[i].next) {
if(e[i].flow > && d[e[i].to] == d[u] + && (a = dfs(e[i].to,min(low,e[i].flow)))) {
tmp += a;
low -= a;
e[i].flow -= a;
e[i^].flow += a;
if(!low) break;
}
}
if(!tmp) d[u] = -;
return tmp;
}
int dinic() {
int tmp = ;
while(bfs()) {
memcpy(cur,head,sizeof(head));
tmp += dfs(S,INF);
}
return tmp;
}
int main() {
int suma,sumb,high,low,ans;
while(scanf("%d",&n),n) {
suma = sumb = ;
for(int i = ; i <= n; i++) {
scanf("%d",gold+i);
suma += gold[i];
}
for(int i = ; i <= n; i++) {
scanf("%d",store+i);
sumb += store[i];
}
scanf("%d",&m);
low = INF;
high = -;
for(int i = ; i < m; i++) {
scanf("%d %d %d",a+i,b+i,c+i);
low = min(low,c[i]);
high = max(high,c[i]);
}
if(suma > sumb) {
puts("No Solution");
continue;
}
ans = -;
S = ;
T = n + ;
while(low <= high) {
int mid = (low + high)>>;
build(mid);
if(dinic() >= suma) {
ans = mid;
high = mid - ;
} else low = mid + ;
}
if(ans > ) printf("%d\n",ans);
else puts("No Solution");
}
return ;
}

POJ 3228 Gold Transportation的更多相关文章

  1. POJ 3228 Gold Transportation(带权并查集,好题)

    参考链接:http://www.cnblogs.com/jiaohuang/archive/2010/11/13/1876418.html 题意:地图上某些点有金子,有些点有房子,还有一些带权路径,问 ...

  2. poj 3228 Gold Transportation 二分+网络流

    题目链接 给出n个城市, 每个城市有一个仓库, 仓库有容量限制, 同时每个城市也有一些货物, 货物必须放到仓库中. 城市之间有路相连, 每条路有长度. 因为有些城市的货物量大于仓库的容量, 所以要运到 ...

  3. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  4. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  5. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  6. POJ:3228-Gold Transportation(要求最小生成树最大边最小)

    Gold Transportation Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3079 Accepted: 1101 D ...

  7. poj 3228(二分+最大流)

    题目链接:http://poj.org/problem?id=3228 思路:增设一个超级源点和一个超级汇点,源点与每一个gold相连,容量为gold数量,汇点与仓库相连,容量为仓库的容量,然后就是二 ...

  8. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  9. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

随机推荐

  1. APP漏洞自动化扫描专业评测报告(下篇)

    上篇.中篇回顾:通过收费情况.样本测试后的扫描时间.漏洞项对比以及扫描能力这几个方面对阿里聚安全[1].360App漏洞扫描[2].腾讯金刚审计系统[3].百度移动云测试中心[4]以及AppRisk ...

  2. UVA - 10029 Edit Step Ladders (二分+hash)

    Description Problem C: Edit Step Ladders An edit step is a transformation from one word x to another ...

  3. Shell脚本递归打印指定文件夹中全部文件夹文件

    #!/bin/bash #递归打印当前文件夹下的全部文件夹文件. PRINTF() { ls $1 | while read line #一次读取每一行放到line变量中 do [ -d $1/$li ...

  4. PHP图像操作类

    基于已给出的各种图像操作方法,这里我总结出了PHP图像操作的一个类,包含给图像加入文字水印.图像水印和压缩图片. 读者可自行加入功能. <? php class Image { private ...

  5. hdu 2883 kebab(时间区间压缩 &amp;&amp; dinic)

    kebab Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  6. 《从零開始学Swift》学习笔记(Day48)——类型检查与转换

    原创文章,欢迎转载.转载请注明:关东升的博客 继承会发生在子类和父类之间,是一系列类的继承关系. 比如:Person是类层次结构中的根类.Student是Person的直接子类.Worker是Pers ...

  7. PL SQL Developer client 连接server

    安装完Oracle,PLSQL之后,在server中打开监听. 计算机右键-管理-服务和应用程序-服务-打开以Oracle开头的服务,特别是监听,这个最重要.详细如图所看到的. (1)配置监听的位置 ...

  8. [Swift]注册并购买加入Apple开发者计划。提示: “你的支付授权失败。请核对你的信息并重试,或尝试其他支付方式。请联系你的银行”

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  9. winFrom线程

    方法--->委托--->BeginInvoke用指定的参数异步执行委托 委托就是我想做什么,而你可以作什么,我就让你去做.

  10. showdialog

    在C#中窗口的显示有两种方式:模态显示(showdialog)和非模态显示(show). 区别: 模态与非模态窗体的主要区别是窗体显示的时候是否可以操作其他窗体.模态窗体不允许操作其他窗体,非模态窗体 ...