Description

 设d(x)为x的约数个数,给定N、M,求  
 

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

Sample Input

2
7 4
5 6

Sample Output

110
121

解题思路:

有一个喜闻乐见的结论:

${\sum_{i=1}^{n}}{\sum_{j=1}^{m}}{d(i*j)]}={\sum_{i=1}^{n}}{\sum_{j=1}^{m}}[gcd(i,j)==1]{\left \lfloor \frac{N}{i} \right \rfloor}{\left \lfloor \frac{M}{j} \right \rfloor}$

剩下的大家都会了吧QAQ

代码:

 #include<map>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int N=;
struct lnt{
std::map<unsigned int,long long>Arr;
long long arr[N];
bool has[N];
void Insert(unsigned int x,long long y)
{
if(x<N)
arr[x]=y,has[x]=true;
else
Arr[x]=y;
}
bool find(unsigned int x)
{
if(x<N)
return has[x];
else
return Arr.find(x)!=Arr.end();
}
long long val(unsigned int pos)
{
if(pos<N)
return arr[pos];
return Arr[pos];
}
};
unsigned int prime[N];
int phi[N];
int miu[N];
bool vis[N];
unsigned int cnt;
lnt Sum_phi;
lnt Sum_miu;
void gtp(void)
{
miu[]=phi[]=;
Sum_phi.Insert(,);
Sum_miu.Insert(,);
for(int i=;i<N;i++)
{
if(!vis[i])
{
prime[++cnt]=i;
miu[i]=-;
phi[i]=i-;
}
for(int j=;j<=cnt&&i*prime[j]<N;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==)
{
miu[i*prime[j]]=;
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
miu[i*prime[j]]=-miu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for(int i=;i<N;i++)
{
Sum_phi.Insert(i,Sum_phi.val(i-)+phi[i]);
Sum_miu.Insert(i,Sum_miu.val(i-)+miu[i]);
}
return ;
}
long long PHI_search(unsigned int pos)
{
if(Sum_phi.find(pos))
return Sum_phi.val(pos);
long long tmp=;
for(unsigned int i=,j;i<=pos;i=j+)
{
j=pos/(pos/i);
tmp+=PHI_search(pos/i)*(long long)(j-i+);
}
Sum_phi.Insert(pos,1ll*pos*(pos+)/-tmp);
return 1ll*pos*(pos+)/-tmp;
}
long long MIU_search(unsigned int pos)
{
if(Sum_miu.find(pos))
return Sum_miu.val(pos);
long long tmp=;
for(unsigned int i=,j;i<=pos;i=j+)
{
j=pos/(pos/i);
tmp+=(j-i+)*MIU_search(pos/i);
}
Sum_miu.Insert(pos,-tmp);
return -tmp;
}
int main()
{
gtp();
int T;
scanf("%d",&T);
while(T--)
{
int x;
scanf("%d",&x);
printf("%lld %lld\n",PHI_search(x),MIU_search(x));
}
return ;
}

BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)的更多相关文章

  1. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  2. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  3. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  4. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

  5. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  6. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  7. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  8. bzoj3994: [SDOI2015]约数个数和(反演+结论?!)

    这题做的历程堪称惊心动魄 刚刚学了莫比乌斯反演的我高高兴兴的和cbx一起反演式子 期间有突破,有停滞,有否定 然后苟蒻的我背着cbx偷偷打开了题解 看到了 我...... 去你的有个性质啊(当然还是自 ...

  9. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

随机推荐

  1. 每位 Ubuntu 18.04 用户都应该知道的快捷键

    作者: Abhishek Prakash 译者: LCTT XiatianSummer 了解快捷键能够提升您的生产力.这里有一些实用的 Ubuntu 快捷键助您像专业人士一样使用 Ubuntu. 您可 ...

  2. [APIO2014]回文串 后缀自动机_Manancher_倍增

    Code: // luogu-judger-enable-o2 #include <cstdio> #include <algorithm> #include <cstr ...

  3. java源码学习

    Collection List ArrayList LinkedList Vector Stack Set HashSet TreeSet Map HashMap TreeMap LinkedHash ...

  4. Hexo 与 Git 集成

    git初始化项目 登录Github,初始化GitHub Pages项目.即是添加一个Git Project. 点击New repository创建一个新的Project.需要填写选项如下:    -  ...

  5. Linux 文件系统权限

    文件权限管理 文件系统上的权限是指文件和目录的权限,权限主要针对三类对象(访问者)定义   owner   group   other  属主    属组    其它 每个文件对每类访问者都定义了三种 ...

  6. next.js、nuxt.js等服务端渲染框架构建的项目部署到服务器,并用PM2守护程序

    前端渲染:vue.react等单页面项目应该这样子部署到服务器 貌似从前几年,前后端分离逐渐就开始流行起来,把一些渲染计算的工作抛向前端以便减轻服务端的压力,但为啥现在又开始流行在服务端渲染了呢?如v ...

  7. C++函数指针相关 & 类成员的指针 & 成员函数的指针

    有时候会有指向类成员变量或者成员函数的指针,但是注意,这个指针并不是针对一个地址的指向,而更多的是一个偏移. 同时,支持将父类对象的成员 转为 子类对象的成员指针,如下: 反过来,是不行的.因为父类的 ...

  8. PostgreSQL数据库创建/删除

    方法1 - 系统命令 sudo su - postgres #切换到postgres用户(系统用户) createdb weichen #创建数据库 psql #直接訪问数据库(默认进入本地postg ...

  9. Weka中数据挖掘与机器学习系列之Weka Package Manager安装所需WEKA的附加算法包出错问题解决方案总结(八)

    不多说,直接上干货! Weka中数据挖掘与机器学习系列之Weka系统安装(四) Weka中数据挖掘与机器学习系列之Weka3.7和3.9不同版本共存(七) 情况1 对于在Weka里,通过Weka  P ...

  10. Zookeeper的单节点集群详细启动步骤

    这个很简单,见如下博客. 1 week110的zookeeper的安装 + zookeeper提供少量数据的存储 [hadoop@weekend110 zookeeper-3.4.6]$ pwd/ho ...