LeetCode 28 Divide Two Integers
Divide two integers without using multiplication, division and mod operator.
思路:1.先将被除数和除数转化为long的非负数,注意一定要为long。由于Integer.MIN_VALUE的绝对值超出了Integer的范围。
2.常理:不论什么正整数num都能够表示为num=2^a+2^b+2^c+...+2^n。故能够採用2^a+2^b+2^c+...+2^n来表示商,即dividend=divisor*(2^a+2^b+2^c+...+2^n),(a,b,c,....m互不相等。且最大为31,最小为0)。
而商的最大值为Integer.MIN_VALUE的绝对值。商最多有32个2的指数次相加。故时间复杂度为常数。
3.divisor*2^a用计算机表示为divisor<<a;
注意:若每次仅仅加一个divisor。则面对Integer.MAX_VALUE除以一个非常小的常数(eg:1。2。3),会超时。
public class Solution {
public int divide(int dividend, int divisor) {
boolean positive = true;
if((dividend>0&&divisor<0)||(dividend<0&&divisor>0))
positive = false;
long did=dividend>=0?(long)dividend:-(long)dividend;
long dis=divisor>=0?(long)divisor:-(long)divisor;
long quotients = positiveDivide(did, dis);
if (!positive)
return (int)-quotients;
return (int)quotients;
}
public long positiveDivide(long did, long dis) {
long[] array = new long[32];
long sum = 0;
int i = 1;
long quotients = 0;
if(dis==1) return did;//为了避免-did=Integer.MIN_VALUE,而dis=1。出现故障
for (array[0]=dis; i < 32 && array[i - 1] <= did; i++)
array[i] = array[i - 1] << 1;
for (i = i - 2; i >= 0; i--) {
if (sum <= did - array[i]) {
sum += array[i];
quotients += 1 << i;
}
}
return quotients;
}
}
优化版,减小内存的消耗。不申请动态数组
public class Solution {
public int divide(int dividend, int divisor) {
boolean positive = true;
if((dividend>0&&divisor<0)||(dividend<0&&divisor>0))
positive = false;
long did=dividend>=0?
(long)dividend:-(long)dividend;
long dis=divisor>=0?(long)divisor:-(long)divisor;
long quotients = positiveDivide(did, dis);
if (!positive)
return (int)-quotients;
return (int)quotients;
}
public long positiveDivide(long did, long dis) {
long sum = 0;
long quotients = 0;
if(dis==1) return did;//为了避免-did=Integer.MIN_VALUE,而dis=1。出现故障
//sum从divisor*2^31的開始加起,不能加则试试加上divisor*2^30。
//若不能则试试divisor*2^29,依此类推
for (int i = 31; i >= 0; i--) {
long temp=dis<<i;//该式为divisor*2^a
//sum<=dividend则说明dividend大于divisor*(2^m+...+2^i),m最大为31
if (sum <= did - temp) {
sum += temp;
quotients += 1 << i;//2^i
}
}
return quotients;
}
}
LeetCode 28 Divide Two Integers的更多相关文章
- [LeetCode] 29. Divide Two Integers 两数相除
Given two integers dividend and divisor, divide two integers without using multiplication, division ...
- Java for LeetCode 029 Divide Two Integers
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 【leetcode】Divide Two Integers (middle)☆
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- Java [leetcode 29]Divide Two Integers
题目描述: Divide two integers without using multiplication, division and mod operator. If it is overflow ...
- [leetcode]29. Divide Two Integers两整数相除
Given two integers dividend and divisor, divide two integers without using multiplication, divisio ...
- [LeetCode] 29. Divide Two Integers(不使用乘除取模,求两数相除) ☆☆☆
转载:https://blog.csdn.net/Lynn_Baby/article/details/80624180 Given two integers dividend and divisor, ...
- [leetcode]29. Divide Two Integers 两整数相除
Given two integers dividend and divisor, divide two integers without using multiplication, division ...
- [LeetCode] 29. Divide Two Integers ☆☆
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 【Leetcode】Divide Two Integers
Divide two integers without using multiplication, division and mod operator. class Solution { public ...
随机推荐
- 移动web——bootstrap模板
基本概念 1.bootstrap就是在媒体查询技术出现以后才开始出现的 2.此技术使响应式开发变得十分轻松,最大特点就是栅格系统(什么设备上如何显示)以及响应式工具(是否可见) 基本模板 <!D ...
- html5——渐变
线性渐变 <style> div { width: 700px; height: 100px; /*方向:从右向左*/ /*起始颜色:黄色*/ /*终止颜色:绿色*/ background ...
- 【译】x86程序员手册01
Intel 80386 Reference Programmer's Manual 80386程序员参考手册 Chapter 1 -- Introduction to the 80386 第1章 - ...
- RTL Compiler之synthesis steps
1 synthesis steps 1) Search Paths rc:/> set_attribute lib_search_path path / rc:/> set_attribu ...
- perf-perf stat用户层代码分析
perf_event 源码分析 前言 简单来说,perf是一种性能监测工具,它首先对通用处理器提供的performance counter进行编程,设定计数器阈值和事件,然后性能计数器就会在设定事件发 ...
- 【解题报告】 洛谷 P3492 [POI2009]TAB-Arrays
[解题报告] 洛谷 P3492 [POI2009]TAB-Arrays 这题是我随机跳题的时候跳到的.写完这道题之后,顺便看了一下题解,发现只有一篇题解,所以就在这里顺便写一个解题报告了. 首先当然是 ...
- Aizu - 1379 Parallel Lines
平行直线 题意:给出一些点,这些点两两相连成一条直线,问最多能连成多少条直线. 思路:暴力出奇迹!!记得当时比赛做这道题的时候一直依赖于板子,结果却限制了自己的思路,这得改.dfs直接暴力,但是需要将 ...
- php观察折模式
<?php class Paper{ private $_observers = array(); public function register($sub){ $this->_obse ...
- django访问静态变量的设置
在项目的urls.py文件中 默认urlpatterns是空的列表需要填入url匹配的路由,默认使用static from django.conf.urls import include, url f ...
- 数据类型与变量(Python学习笔记01)
数据类型与变量 Python 中的主要数据类型有 int(整数)/float(浮点数).字符串.布尔值.None.列表.元组.字典.集合等. None 每个语言都有一个专门的词来表示空,例如 Java ...