[Noi2002]Savage

数学题。

题解回去写(有个坑点)

flag++

#include <cstdio>
int n,m,c[25],p[29],l[29];
int exgcd(int a,int b,int &x,int &y){
if(!b){x=1,y=0;return a;}
int ans=exgcd(b,a%b,x,y),t=x;
x=y,y=t-a/b*y;
return ans;
}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
bool check(int ans){
int x,y;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
int b=ans,a=p[j]-p[i],C=c[i]-c[j],g=gcd(a,b);x=0,y=0;
if(C%g==0){
a/=g,b/=g,C/=g;
exgcd(a,b,x,y);
b=b<0?-b:b;
x=(x*C%b+b)%b;
if(!x) x+=b;
if(x<=min(l[i],l[j]))return 0;
}
}
}
return 1;
}
int main(){
int mx=-1;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d%d",&c[i],&p[i],&l[i]),mx=max(mx,c[i]);
for(int ans=mx;ans<=1e6;ans++)if(check(ans))return !printf("%d",ans);
}

[Noi2002]Savage的更多相关文章

  1. BZOJ 1407: [Noi2002]Savage( 数论 )

    枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans ...

  2. BZOJ1407 NOI2002 Savage 【Exgcd】

    BZOJ1407 NOI2002 Savage Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...

  3. [Noi2002]Savage 题解

    [Noi2002]Savage 时间限制: 5 Sec  内存限制: 64 MB 题目描述 输入 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci ...

  4. 【BZOJ 1407】[Noi2002]Savage ExGCD

    我bitset+二分未遂后就来用ExGCD了,然而这道题的时间复杂度还真是玄学...... 我们枚举m然后对每一对用ExGCD判解,我们只要满足在最小的一方死亡之前无解就可以了,对于怎么用,就是ax+ ...

  5. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  6. 【bzoj1407】 Noi2002—Savage

    http://www.lydsy.com/JudgeOnline/problem.php?id=1407 (题目链接) 题意 有n个原始人他们一开始分别住在第c[i]个山洞中,每过一年他们都会迁往第( ...

  7. BZOJ1407 [Noi2002]Savage

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...

  8. 【扩展欧几里得】Bzoj 1407: [Noi2002]Savage

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目.第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0 ...

  9. bzoj 1407: [Noi2002]Savage

    Description 解题报告: 因为给定答案范围,暴力枚举时间,然后再两两枚举野人,判断是否有可能在某一年相遇,我们设这一年为\(x\),那么显然相交的条件是: \(x*(p[i]-p[j])+y ...

随机推荐

  1. likely, unlikely的作用

    在项目中看到了likely.unlikely宏的使用, 一直不是非常清楚它们的作用,所以就深究下. likely表示被測试的表达式大多数情况下为true, unlikely则表示相反. 两个宏定义: ...

  2. Eclipseproject出现红叉

    通过import导入包的时候往往会出现红叉的情况.但又没有错:这样的情况能够这样解决 1.选中项目.按Alt键和Enter键 2.选Andriod,在右側的版本号信息里选择一个不同的版本号,如原来默认 ...

  3. SQLServer 多点及时备份技巧

    为了保证数据库的安全性,我们都会规划数据库的容灾策略,包含本地备份.异地备份.raid.或者使用高可用性(如 日志传送.镜像.复制等)进行异地容灾.因为 SqlServer 数据库的备份仅仅有一个备份 ...

  4. LLVM每日谈之十九 LLVM的第一本系统的书&lt;Getting Started with LLVM Core Libraries&gt;

    作者:史宁宁(snsn1984) LLVM最终有了一本系统的书了--<Getting Started with LLVM Core Libraries>. 这本书号称是LLVM的第一本书, ...

  5. PHP检测输入数据是否合法常用的类(转)

    <?php class Fun{ function isEmpty($val) { if (!is_string($val)) return false; //是否是字符串类型 if (empt ...

  6. POJ3414 Pots

    题目: 给你两个容器,分别能装下A升水和B升水,并且可以进行以下操作 FILL(i)        将第i个容器从水龙头里装满(1 ≤ i ≤ 2); DROP(i)        将第i个容器抽干 ...

  7. 下载jdk12版本没有jre问题处理

    以往下载jdk1.6版本直接运行会生成jdk,jre两个文件,但今天下载jdk12运行后,只有jdk目录文件,并没有jre后来在网上查找后通过命令行方式手动生成jre 1.下载jdk12 网址:htt ...

  8. js例子

    1.子菜单下拉 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www ...

  9. vcpkg错误分析方法

    最近在使用vcpkg时,经常会碰到CMake错误. 有些以前能编译通过的包, 过一段时间又不能编译错误了. 错误提示一般是CMake错误, 弄得很郁闷. 我采用以下步骤解决了问题: 分析错误 查看错误 ...

  10. os.clock()导致的bug

    os.clock () 功能:返回一个程序使用CPU时间的一个近似值 最近做了一个功能,这个功能需要统计时间间隔,例如每隔0.5秒做一次调用. 我用了os.clock()去统计时间,结果在pc机上都没 ...