D. Water Tree
 

Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each vertex is a reservoir which can be either empty or filled with water.

The vertices of the tree are numbered from 1 to n with the root at vertex 1. For each vertex, the reservoirs of its children are located below the reservoir of this vertex, and the vertex is connected with each of the children by a pipe through which water can flow downwards.

Mike wants to do the following operations with the tree:

  1. Fill vertex v with water. Then v and all its children are filled with water.
  2. Empty vertex v. Then v and all its ancestors are emptied.
  3. Determine whether vertex v is filled with water at the moment.

Initially all vertices of the tree are empty.

Mike has already compiled a full list of operations that he wants to perform in order. Before experimenting with the tree Mike decided to run the list through a simulation. Help Mike determine what results will he get after performing all the operations.

Input

The first line of the input contains an integer n (1 ≤ n ≤ 500000) — the number of vertices in the tree. Each of the following n - 1 lines contains two space-separated numbers aibi (1 ≤ ai, bi ≤ nai ≠ bi) — the edges of the tree.

The next line contains a number q (1 ≤ q ≤ 500000) — the number of operations to perform. Each of the following q lines contains two space-separated numbers ci (1 ≤ ci ≤ 3), vi (1 ≤ vi ≤ n), where ci is the operation type (according to the numbering given in the statement), and vi is the vertex on which the operation is performed.

It is guaranteed that the given graph is a tree.

Output

For each type 3 operation print 1 on a separate line if the vertex is full, and 0 if the vertex is empty. Print the answers to queries in the order in which the queries are given in the input.

Examples
input
5
1 2
5 1
2 3
4 2
12
1 1
2 3
3 1
3 2
3 3
3 4
1 2
2 4
3 1
3 3
3 4
3 5
output
0
0
0
1
0
1
0
1

题意:

给你一棵树,n个点n-1条边,m个询问

(1)“1 v",表示将以点v为根节点的子树全部赋值为1,

(2)"2 v",表示将点v以及点v的所有祖先节点全部赋值为0,

(3)"3 v",表示查询点v的值。

题解:

我们dfs出dfs序列,再用线段树/树状数组修改一段序列就好了(只有01)

#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int maxn = 5e5+, Pow = << ;
int N, Q, ind[maxn], r[maxn], cur = , a, b;
int emp[*Pow+] , fil[*Pow+];
vector<int> adj[maxn];
void dfs(int v, int par){
ind[v] = cur++;
for(int i = ; i<adj[v].size(); i++) if(adj[v][i]!=par) dfs(adj[v][i], v);
r[v] = cur-;
}
void upd(int l, int r, int t){
l+=Pow; r+=Pow;
while(l<=r){
fil[l] = fil[r] = t;
l = (l+)/;
r = (r-)/;
}
}
int get(int x){
int res = ;
for(int i = Pow+x; i>; i/=) res = max(res, fil[i]);
return res;
}
void add(int x, int t){
for(int i = Pow+x-; i>; i/=) emp[i] = t;
}
int rmq(int p, int l, int r, int a, int b){
if(l>b||r<a) return ;
if(l>=a&&r<=b) return emp[p];
return max(rmq(*p, l, (l+r)/, a, b), rmq(*p+, (l+r)/+, r, a, b));
}
int main(){
ios::sync_with_stdio(false); cin.tie(false); cout.tie(false);
cin >> N;
for(int i = ; i<N-; i++){
cin >> a >> b;
a--; b--;
adj[a].push_back(b);
adj[b].push_back(a);
}
dfs(, -);
cin >> Q;
for(int i = ; i<=Q; i++){
cin >> a >> b;
b--;
if(a==) upd(ind[b], r[b], i);
else if(a==) add(ind[b], i);
else cout << (get(ind[b])>rmq(, , Pow, ind[b], r[b])) << '\n';
}
}

343D/Codeforces Round #200 (Div. 1) D. Water Tree dfs序+数据结构的更多相关文章

  1. Codeforces Round #200 (Div. 1)D. Water Tree dfs序

    D. Water Tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/343/problem/ ...

  2. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  3. Codeforces Round #200 (Div. 1) D. Water Tree 树链剖分+线段树

    D. Water Tree time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  5. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  6. Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)

    思路: dfs序其实是很水的东西.  和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...

  7. Codeforces Round #200 (Div. 1)D. Water Tree

    简单的树链剖分+线段树 #include<bits\stdc++.h> using namespace std; #define pb push_back #define lson roo ...

  8. Codeforces Round #225 (Div. 2) E. Propagating tree dfs序+-线段树

    题目链接:点击传送 E. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  9. Codeforces Round #520 (Div. 2) E. Company(dfs序判断v是否在u的子树里+lca+线段树)

    https://codeforces.com/contest/1062/problem/E 题意 给一颗树n,然后q个询问,询问编号l~r的点,假设可以删除一个点,使得他们的最近公共祖先深度最大.每次 ...

随机推荐

  1. jQuery中实现自己定义方法的扩展

    JQuery包装器提供了大量的方法.能够再页面中直接使用.可是.没有 不论什么一个库能够满足全部的需求.所以.JQuery库提供了丰富的扩展功能 .以禁用一组表单元素为例.看看怎么简单有效的在JQue ...

  2. 关于vue 自定义组件的写法与用法

    最近在网上看到很多大神都有写博客的习惯,坚持写博客不但可以为自己的平时的学习做好记录积累 无意之中也学还能帮助到一些其他的朋友所以今天我也注册一个账号记录一下学习的点滴!当然本人能力实在有限写出的文章 ...

  3. bzoj1790: [Ahoi2008]Rectangle 矩形藏宝地

    被统考草翻回来做题不太行啊,线段树和cdq都写挂细节 这题大概就是四维偏序吧,欸n怎么到了20w,只能水70啊 但是这个好像只要有1个在里面就可以ans就可以++了耶 突然想到高中奥数老师说的,大概是 ...

  4. Maven + SpringMVC + Mybatis

    使用IDEA配置Maven + SpringMVC + Mybatis [一步一步踩坑详细配置完成] PS:初学,想使用Maven配置一个SpringMVC的开发环境,照着网上的各种图文解说,配置了好 ...

  5. js 智能识别收获地址

    项目地址https://github.com/wzc570738205/smart_parse 支持以下数据格式 马云,1351111111,北京市朝阳区姚家园3楼 马云1351111111北京市朝阳 ...

  6. div position:fixed后,水平居中的问题

    .div{position:fixed;margin:auto;left:0; right:0; top:0; bottom:0;width:200px; height:150px;}

  7. const,var,let 区别

    js中const,var,let区别 1.const定义的变量不可以修改,而且必须初始化. 声明的是常量 1 const b = 2;//正确 2 // const b;//错误,必须初始化 3 co ...

  8. 安卓input框获取焦点时,底部按钮会顶上去的解决方法

    var h = document.body.scrollHeight;window.onresize = function(){ if (document.body.scrollHeight < ...

  9. ZOJ 3019 Puzzle

    解题思路:给出两个数列an,bn,其中an,bn中元素的顺序可以任意改变,求an,bn的LCS 因为数列中的元素可以按任意顺序排列,所以只需要求出an,bn中的元素有多少个是相同的即可. 反思:一开始 ...

  10. BZOJ 4229: 选择 LCT_独创方法_边双

    考虑如果两点在一个环中,那么这两点一定可以构出双联通分量. 考虑环和环镶嵌,那么两个环中的点一定都互为双联通分量. 由此,我们想到一个算法: 将删边转为反向加边,用LCT维护图. 当我们连接两个点时, ...